• Title/Summary/Keyword: Photosynthesis Capacity

Search Result 88, Processing Time 0.027 seconds

Effects of Soil Water Regimes on Photosynthesis, Growth and Development of Ginseng Plant (Panax ginseng C. A. Meyer) (토양함수량이 인삼의 광합성 및 생육에 미치는 영향)

  • 이성식;양덕조;김요태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.2
    • /
    • pp.175-181
    • /
    • 1982
  • This experiment was carried out to study the influence of the various soil water regimes on photosynthesis and growth and development of ginseng plant (3 years). The results were as follows: optimum soil water content for root dry weight and diameter appeared to be 62% of field capacity (13.9% fresh weight basis). The 62% field capacity showed superiority in leaf area, leaf dry weight and also in number of flower, fruit, seed per plant. Net photosynthesis rates per unit area increased with increasing soil water content but net photosynthesis rates per plant were superior in 62% field capacity. Rates of transpiration increased linearly with increasing soil water content but density of stomata decreased with increasing soil water content.

  • PDF

Alteration of Gas Exchange in Rice Leaves Infected with Magnaporthe grisea

  • Yun, Sung-Chul;Kim, Pan-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • Infection with rice blast fungus (Magnaporthe grisea) significantly reduced foliar net photosynthesis (A) of rice cultivars: Ilpoom, Hwasung, and Choochung in greenhouse experiments. By measuring the amount of diseased leaf area with a computer image analysis system, the relation between disease severity (DS) and net photosynthetic rate was curvilinearly correlated (r=0.679). Diseased leaves with 35% blast symptom can be predicted to have a 50% reduction of photosynthesis. The disease severity was linearly correlated (r=0.478) with total chlorophyll (chlorophyll a and chlorophyll b) per unit leaf area(TC). Light use efficiency was reduced by the fungal infection according to the light response curves. However, dark respiration (Rd) did not change after the fungal infection (p=0.526). Since the percent of reduction in photosynthesis greatly exceeded the percent of leaf area covered by blast lesions, loss of photosynthetic tissue on an area basis could not by itself account for the reduced photosynthesis. Quantitative photosynthetic reduction can be partially explained by decreasing TC, but cannot be explained by decreasing Rd. By photosynthesis (A)-internal CO$_2$ concentration (C$_i$ curve analysis, it was suggested that the fungal infection reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, ribulose-1,5-bisphosphate (RuBP) regeneration, and inorganic phosphate regeneration. Thus, the reduction of photosynthesis by blast infection was associated with decreased TC and biochemical capacity, which comprises all carbon metabolism after CO$_2$ enters through the stomata.

  • PDF

Effects of Soil Moisture on Photosynthesis , Transpiration and Stomatal Resistance in sotghums II.Ondiurnal changes (토양수분이 수수류의 광합성 , 증산량 및 기공저항에 미치는 영향 II. 광합성과 증산량의 일중변화)

  • 한흥전;류종원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.1
    • /
    • pp.60-64
    • /
    • 1986
  • To determine the effects of soil moisture on diurnal changes of photosynthesis, transpiration and stomatal resistance, sorghum and soghum-sudangrass hybrid were grown at large concrete pots maintained at 100, 80, 60 and 40% of field moisture capacity. Photosynthesis were measured from a.m. 6 to p.m. 6 on a fine day. 1. Photosynthesis and transpiration reacted similarly to water stress and environmental factors, and they reached at their maximum points from noon to 2 p.m. and decreased sharply after 4 p.m. 2. Photosynthesis and transpiration of sorghum were higher at 60% field moisture capacity than those of the other field moisture capacities. In sorghum-sudangrass hybrid, photosynthesis was in the order of 60>80>40>100% and transpiration was in the order of 60>80>100>40%. 3. Stomatal resistance did not show clear diurnal change and was the lowest at 60% among four field moisture capacities.

  • PDF

Characteristics of Photosynthesis and Leaf Growth of Peucedanum japonicum by Leaf Mold and Shading Level in Forest Farming (임간재배지 내 부엽토 및 차광수준에 따른 갯기름나물의 광합성과 엽생장 특성)

  • Song, Ki Seon;Jeon, Kwon Seok;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • This study was carried out in order to investigate the photosynthesis response and leaf characteristics of Peucedanum japonicum growing in forest farming. The experiment was performed by leaf mold (pine tree and chestnut tree) and shading levels (0%, 35%, 50% and 75% shading). Light relative intensity was 100% (full sunlight), 60.3% (35% shading), 35.1% (50% shading), and 17.4% (75% shading) respectively. Light response curves of pine-leaf mold and chestnut-leaf mold were the highest in control (full sunlight) and these were getting lower in the higher shading level. Photosynthesis capacity and light saturation point were indicated higher in chestnut-leaf mold within the same shading level. As the shading level increased, maximum photosynthesis rate decreased. And apparent quantum yield was not indicated statistically significant difference from all treatment. Leaf area, leaf length and leaf width were significant higher in 35% shading and control under chestnut-leaf mold in all treatment. As the shading level increased, LAR (leaf area ratio), SLA (specific leaf area) and SPAD value decreased in pine-leaf mold and chestnut-leaf mold. As a result of surveying the whole experiment, P. japonicum is judged better growth and higher yield by maintaining 35% shading (relative light intensity 60%) under chestnut-leaf mold in forest farming.

Effedts soil moisture on Photosythess , Transpiration and Stomatal resistance in Sorghums I. On seasonal changes (토양수분이 수수류의 광합성 , 증산량 및 기공저항에 미치는 영향 I. 광합성과 증산량의 계절간 변화)

  • 한흥전;류종원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.1
    • /
    • pp.53-59
    • /
    • 1986
  • The effects of soil moisture on seasonal changes of photosynthesis, transpiration and stomatal resistance were studied in sorghum (Pioneer 931) and sorghum - sudangrass hybird (Pioneer 988) at Suweon in 1985. Soil moisture was maintained with approximately 100, 80, 60 and 40% of field moisture capacity in large concrete pot (12m length $\times$ 1m width $\times$ 1m depth). 1. Photosynthesis and transpiration showed a sharp seasonal changes and reacted similarly to water stress and environmental factors, and were the highest in the middle of August, and were the lowest in the beginning of October. Sorghum - sudan hybird had better photosynthesis, transpiration and stomatal control than those of sorghum in hot summer season. 2. The rate of photosynthesis of 60 and 80% field moisture capacity was higher than that of 100 and 40% throughout growing season, but the effect of soil moisture on photosynthesis varied seasonally by climate factors. Optimum soil moisture was 60% in early summer and fall, and was 60 - 80% in hot summer season. 3. Drought and over-moisture affected physiological metabolism of plant, and so the dry matter yield of 40 and 100% field moisture capacity decreased by 70% compared with that of 60% field moisture capacity.

  • PDF

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Analysis of CO2 Fixation Capacity in Leaves of Ten Species in the Family Fagaceae (제주도 자생 참나무과 식물의 대기 중 CO2 흡수 능력의 비교분석)

  • Oh, Soon-Ja;Shin, Chang-Hoon;Kim, Chul-Soo;Kang, Hee-Suk;Kang, Kyeng-Min;Yang, Yun-Hi;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The rate of photosynthesis (A) of leaves from 10 plant species (6 evergreen and 4 deciduous) of the family Fagaceae was measured using a portable photosynthesis analyzer, to examine which species take up $CO_2$ most efficiently. Of the evergreen species, the photosynthetic rate of Castanopsis cuspidata var. sieboldii was highest, and remained above 82.1~106.4 ${\mu}mol\;kg^{-1}s^{-1}$ from July to November. Of the deciduous species, the photosynthetic rate of Quercus acutissima was higher than that of the other three species, and remained high at 83.5~116.6 ${\mu}mol\;kg^{-1}s^{-1}$ from September to November. The photosynthetic rate of the 10 species was positively correlated with stomatal conductance (gs) and transpiration rate (E). However, there was no correlation between photosynthetic rate and intercellular $CO_2$ concentration ($C_i$), although there was a positive correlation just in three species (Q. gilva, Q. acutissima and Q. glauca). These results suggest that the $CO_2$ fixation capacity of C. cuspidata var. sieboldii, an evergreen species, and Q. acutissima, a deciduous species, is significantly higher than that of the other species examined, and that photosynthesis is regulated by both stomatal conductance and transpiration. Therefore, C. cuspidata var. sieboldii and Q. acutissima may be valuable for the evaluation of carbon uptake in urban green spaces as well as in afforested areas.

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Eco-physiological Responses of Two Populus deltoides Clones to Ozone

  • Yun, Sung-Chul;Kim, Pan-Ki;Hur, Jae-Seoun;Lee, Jae-Cheon;Park, Eun-Woo
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • One-year-old cottonwood (Populus deltoides Bartr.) clones, which were classified as sensitive or tolerant, were exposed to 150 n1/1 ozone (O$_3$) over 8 days for 8 hours each day under glass chamber conditions with natural sunlight. The leaves of the sensitive clone had black stipple and bifacial necrosis after $O_3$ treatment. Photosynthesis and stomatal conductance were measured before, during, and after the $O_3$ treatment. The photosynthetic rates due to $O_3$ treatment were decreased 51 percent and 34 percent on the sensitive and tolerant clone, respectively. The stomatal conductance of the sensitive clone was more than 40 percent higher than that of the tolerant clone regardless of the $O_3$ treatment. As light intensity increased, the $O_3$ effect on photosynthesis was clear. Compared to the previous growth chamber studies, our natural light exposure system was able to maintain a stable photosynthetic responses of the control treatment throughout the fumigation period. In addition, changes in assimilation versus intercellular $CO_2$ concentration (A/C curves) showed that $O_3$ decreased the slope and asymptote of the curves for the sensitive clone. This indicates that $O_3$ decreases the biochemical capacity of photosynthesis on the sensitive clone. Chlorophyll contents and fluorescence of the two clones were analyzed to examine the $O_3$ effects on photosystem 11, but $O_3$ did not impact these variables on either clone. Although the tolerant clone did not show any foliar injury, we could not find any ecophysiological defensive responses to $O_3$ treated. Stomatal conductance of the tolerant clone was originally much lower than that of the sensitive one. Thus, the mechanisms of the tolerant clone in this system are to narrowly open stomata and efficiently maintain photosynthesis with a more durable biochemical apparatus of photosynthesis under $O_3$ stress. The sensitive clone has higher photosynthetic capacity and more efficient light reaction activity than the tolerant one under charcoal filtered condition, but is not as resilient under stress.

  • PDF