• 제목/요약/키워드: Photoproduct

검색결과 29건 처리시간 0.029초

Photoaddition Reactions of Alkynes to Quinonoid Compounds

  • 김성식;김애란;조인호;심상철
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.57-60
    • /
    • 1989
  • UV irradiation of anthraquinone and diphenylacetylene in benzene gave 1:1 photoadduct (7) and cyclization product (8). The photoreaction of anthrone and diphenylacetylene in dichloromethane afforded the photooxidation products (7, 8, and 9) in air. The photoproduct (7) underwent the cyclization reaction during the purification by the column chromatography (silica gel). When irradiated with 350 nm UV light, the product (11) of benzil reacted with diphenylacetylene to give a photoadduct(12).

Benoxaprofen-photosensitization Decomposition of Tryptophan Peptides in Aqueous Micellar Systems

  • Yoon, Min-Joong;Lee, Ki-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.261-264
    • /
    • 1987
  • Benoxaprofen (2-(4-chlorophenyl)-${\alpha}$ -methyl-5-benzoxazole acetic acid) is a nonsteroidal anti-inflammatory drug that causes acute cutaneous phototoxicity. The ability of benoxaprofen (BXP) and its photoproduct, decarboxybenoxaprofen (DBXP) to photosensitize the decomposition of tryptophan was evaluated in various media such as water, ethanol and aqueous micellar dispersions of surfactants. The weak photosensitization of BXP in water was found to be enhanced in cationic CTAB micelle system, but yielded little difference in anionic SDS micelles. In ethanol solution, BXP was determined to photosensitize the decomposition of tryptophan, but no photosensitization was observed with DBXP. All of these results implicate that the anion radical of BXP may play a major role in the photosensitization in hydrophobic micellar phase, forming superoxide through interaction with oxygen as demonstrated by observation that the photosensitization was inhibited by superoxide dismutase.

Excited State Proton Transfers and Subsequent Electron Rearrangement of Aqueous 6-Hydroxyquinoline

  • 유현웅;권혁진;장두전
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권2호
    • /
    • pp.156-161
    • /
    • 1997
  • Aqueous 6-hydroxyquinoline in the first excited singlet state undergoes protonation to the imine group first in 15 ps, then in the time scale of 40 ps deprotonation from the enol group and finally, however, quickly as in 11 ps electron rearrangement to change into a resonance hybrid structure of quinoid-prevailing forms. Despite the fact that the decay time constant is smaller than the formation time constant, fluorescence from excited protropic zwitterion is observed to assign its maximum at 510 nm. The electron rearrangement is basically an intramolecular charge transfer from the deprotonated oxygen atom to the positively charged iminium ring without any notable change in nuclear geometry, producing a zwitterionic quinoid structure with much a smaller electric dipole moment than the zwitterionic protropic species. This photoproduct formed by consecutive excited state proton and electron transfers shows a smaller dipole moment in S1 than in S0 and a hypsochromic shift although its S1 state has (π, π*) character.

NMR Structural Study of the 3'-T.G Mismatched DNA Decamer Duplex Containing the T-T (6-4) Adduct

  • Lee, Joon-Hwa;Park, Yun-Jeong;Park, Byong-Seok
    • 한국자기공명학회논문지
    • /
    • 제3권1호
    • /
    • pp.60-70
    • /
    • 1999
  • The pyrimidine(6-4) pyrimidone photoproduct [(6-4) adduct] is one of the major photoproducts induced by UV irradiation of DNA and occurs at TpT sites. The (6-4) adduct is highly mutagenic and specific during translesion replication. The marked preference for insertion of A opposite the 5'-T and G opposite the 3--T of the (6-4) adducts leads to a predominantly 3'-T\longrightarrowC transition with 85% replicating error rate. In order to obtain insight into the origin of 3'-T\longrightarrowC transition induced by the (6-4) adduct, we have performed one - and two-dimensional NMR experiment. The 3'-Tof the (6-4) lesion forms the stable hydrogen bonding to the imino proton of an opposed G, which stabilizes the overall helix and diminishes the highly distorted conformation caused by the (6-4) lesion in the (6-4)/AA duplex. We proposed that the greater insertion of a G over an A opposite the 3'-T of the (6-4) lesion These results may account for the greater preference for the insertion of a G over a A opposite the 3'-T of the (6-4) lesion. Thus this insertion leads to the highly specific 3'-T\longrightarrowC multation at the (6-4) lesion site.

  • PDF

Structure of a DNA Duplex Containing a Site-Specific Dewar Isomer: Structural Influence of the 3'-T.G base pair of the Dewar product.

  • Lee, Joon-Hwa;Choi, Byong-Seok
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.268-275
    • /
    • 2000
  • In contrast to the pyrimidine (6-4)pyrimidone photoproduct [(6-4) adduct], its Dewar valence isomer (Dewar product) is low mutagenic and produces a broad range of mutations with a 42 % replicating error frequency. In order to determine the origin of the mutagenic property of the Dewar product, we used experimental NMR restraints and molecular dynamics to determine the solution structure of a Dewar·lesion DNA decamer duplex, which contains a mismatched base pair between the 3'-T residue and an opposed G residue. The 3'-T of the Dewar lesion forms stable hydrogen bonds with the opposite G residue. The helical bending and unwinding angles of the DW/GA duplex, however, are much higher than those of the DW/AA duplex. The stable hydrogen bonding of the G 15 residue does not increase the thermal stability of the overall helix. It also does not restore the distorted backbone conformation of the DNA helix that is caused by the forming of a Dewar lesion. These structural features implicate that no thermal stability, or conformational benefits of G over A opposite the 3'-T of the Dewar lesion, facilitate the preferential incorporation of an A. This is in accordance with the A rule during translesion replication and leads to the low frequent $3'-T{\rightarrow}C$ mutation at this site.

  • PDF

나프토 퀴논 디아지드 유도체의 합성 및 그 감광 특성 (Synthesis and Characterization of Photosensitive Naphthoquinonediazide-sulfonyl Derivatives)

  • 주소영;홍성일
    • 공업화학
    • /
    • 제1권2호
    • /
    • pp.116-123
    • /
    • 1990
  • 감광성 orthonaphthoquinonediazide-sulfonyl 유도체를 합성하고, 그 감광특성에 대해 검토한 결과, UV에 의해 광변환 되어, 알칼리 가용성의 분해화합물이 생성됨을 확인하였다. 이 유도체를 PAC로, m-cresol novolac을 matrix resin으로 photoresist를 제조하고 감광 특성을 고찰하여, 미세 패턴용 photoresist로의 타당성을 확인하였다. 3, 4, 5-Trihydroxybenzophenone 의 벌키한 공명 구조는 노광부의 감도와 가용성을 향상시켰으며, PAC 와 matrix resin의 혼합 무게비가 3:8 일 때 가장 적절한 dissolution rate를 나타냈으므로, 이 photoresist가 정해진 조건 하에서 감도, 해상력이 가장 우수하였다.

  • PDF

Analysis of Cis- Trans Photoisomerization Mechanism of Rhodopsin Based on the Tertiary Structure of Rhodopsin

  • Yamada, Atsushi;Yamato, Takahisa;Kakitani, Toshiaki;Yamamoto, Shigeyoshi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.51-54
    • /
    • 2002
  • We propose a novel mechanism (Twist Sharing Mechanism) for the cis-trans photoisomerization of rhodopsin, based on the molecular dynamics (MD) simulation study. New things devised in our simulations are (1) the adoption of Mt. Fuji potentials in the excited state for twisting of the three bonds C9=C10, C11=C12 and C13=14 which are modeled using the detailed ab initio quantum chemical calculations and (2) to use the rhodopsin structure which was resolved recently by the X-ray crystallographic study. As a result, we found the followings: Due to the intramolecular steric hindrance between 20-methyl and 10-H in the retinal chromophore, the C12-C13 and C10-C11 bonds are considerably twisted counterclockwise in rhodopsin, allowing only counterclockwise rotation of the C11 =C12 in the excited state. The movement of 19-methyl in rhodopsin is blocked by the surrounding three amino acids, Thr 118, Met 207 and Tyr 268, prohibiting the rotation of C9=C10. As a result only all-trans form of the chromophore is obtainable as a photoproduct. At the 90$^{\circ}$ twisting of C11=C12 in the course of photoisomerization, twisting energies of the other bonds amount to about 20 kcal/mol. If the transition state for the thermal isomerization is assumed to be similar to this structure, the activation energy for the thermal isomerization around C11=C12'in rhodopsin is elevated by about 20 kcal/mol and the thermal isomerization rate is decelerated by 10$\^$-14/ times than that of the retinal chromophore in solution, protecting photosignal from the thermal noise.

  • PDF

Formation of DNA-protein Cross-links Mediated by C1'-oxidized Abasic Lesion in Mouse Embryonic Fibroblast Cell-free Extracts

  • Sung, Jung-Suk;Park, In-Kook
    • Animal cells and systems
    • /
    • 제9권2호
    • /
    • pp.79-85
    • /
    • 2005
  • Oxidized abasic residues arise as a major class of DNA damage by a variety of agents involving free radical attack and oxidation of deoxyribose sugar components. 2-deoxyribonolactone (dL) is a C1'-oxidized abasic lesion implicated in DNA strand scission, mutagenesis, and covalent DNA-protein cross-link (DPC). We show here that mammalian cell-free extract give rise to stable DPC formation that is specifically mediated by dL residue. When a duplex DNA containing dL at the site-specific position was incubated with cell-free extracts of Po ${\beta}-proficient$ and -deficient mouse embryonic fibroblast cells, the formation of major dL-mediated DPC was dependent on the presence of DNA polymerase (Pol) ${\beta}$. Formation of dL-specific DPC was also observed with histones and FEN1 nuclease, although the reactivity in forming dL-mediated DPC was significantly higher with Pol ${\beta}$ than with histones or FEN1. DNA repair assay with a defined DPC revealed that the dL lesion once cross-linked with Pol ${\beta}$ was resistant to nucleotide excision repair activity of cell-free extract. Analysis of nucleotide excision repair utilizing a model DNA substrate containing a (6-4) photoproduct suggested that excision process for DPC was inhibited because of DNA single-strand incision at 5' of the lesion. Consequently DPC mediated by dL lesion may not be readily repaired by DNA excision repair pathway but instead function as unusual DNA damage causing a prolonged DNA strand break and trapping of the major base excision repair enzyme.

자외선에 의해 자외선 차단 효율이 상승하는 선크림 제형 개발 (Development of a Sunscreen Formulation that Increases UV Blocking Ability by UV Light)

  • 최민성;조형진;송경희;송승진;강내규;박선규
    • 대한화장품학회지
    • /
    • 제45권2호
    • /
    • pp.139-150
    • /
    • 2019
  • 자외선에 의해 자외선 차단 효율이 상승하는 선크림에 대한 연구를 수행하였다. Ethylhexyl methoxycinnamate (OMC)는 가장 널리 쓰이는 자외선 차단제이고, OMC에 대한 광안정성 연구는 오랫동안 수행되어왔다. OMC는 자외선에 의해 trans구조가 cis구조로 변하거나, dimer를 비롯한 광반응물을 생성하여 자외선 차단효율이 떨어진다고 알려져 왔다. 하지만 본 연구에서는 OMC나 isoamyl p-methoxycinnamate(IMC)와 같이 메톡시신나메이트 구조를 공유하는 자외선 차단제들이 실제 사용조건과 유사한 조건에서 자외선에 노출 시키고 잘 설계된 실험 방법으로 in vitro SPF 수치를 측정하였을 때 오히려 자외선 차단 효율이 증가하는 것을 발견하였다. 이것은 자외선에 의해서 생성된 광반응물과 OMC간의 ${\pi}-{\pi}$ stacking을 통한 ${\pi}-{\pi}^*$ 전이 에너지 변화(UV activated transition) 때문인 것으로 생각된다. 이 발견을 선크림 개발에 적용하기 위해서는 함께 사용되는 에몰리언트의 극성 및 상용성을 적절히 고려해야 한다. 상용성이 좋은 극성 에몰리언트를 포함하면 자외선에 의해 OMC가 광반응물을 생성하지 않기 때문에 발견의 효과가 감소하는 것으로 보인다. 이러한 작용 기전(UV activated SPF boosting)을 바탕으로 상업용 수준의 선크림을 제조하여 평가해보았다. 그 결과 자외선(2 MED)에 노출되었을 때 in vitro SPF 수치는 50.69에서 72.33으로 42.69%로 증가하였고 in vivo SPF 평가에서는 53.7을 얻어 같은 조건의 대조군의 선크림(SPF 34.4 이하) 대비 56.10% 이상 높게 측정되었다. 따라서 OMC와 IMC가 특정 조건에서 UV sensor처럼 작용하여, 자외선에 노출 되었을 때 자외선 차단 효율을 높일 수 있는 선크림을 제조할 수 있었다.