• Title/Summary/Keyword: Photophysical

Search Result 101, Processing Time 0.027 seconds

Phosphorescent Iridium Complexes for OLEDs Based on 1-Phenylpyrazole Ligands with Fluorine and Methyl Moieties

  • Yoon, Seung Soo;Song, Ji Young;Na, Eun Jae;Lee, Kum Hee;Kim, Seong Kyu;Lim, Dong Whan;Lee, Seok Jae;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1366-1370
    • /
    • 2013
  • A series of phosphorescent iridium(III) complexes 1-4 based on phenylpyrazole were synthesized and their photophysical properties were investigated. To evaluate their electroluminescent properties, OLED devices with the structure of ITO/NPB/mCP: 8% Iridium complexes (1-4)/TPBi/Liq/Al were fabricated. Among those, the device with 3 showed the most efficient white emission with maximum luminance of 100.6 $cd/m^2$ at 15 V, maximum luminous efficiency of 1.52 cd/A, power efficiency of 0.71 lm/W, external quantum efficiency of 0.59%, and CIE coordinates of (0.35, 0.40) at 15.0 V, respectively.

Transient Absorption Spectra of Phenothiazine Derivative in the Vesicle System Containing Ru$^{2+}$ Complex as a Sensitizer

  • Park, Yong-Tae;Kim, Young-Doo;Burkhart, Richard D.;Caldwell, Norris J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.84-87
    • /
    • 1988
  • The Photophysical and photochemical properties of Ruthenium bipyridine with two long hydrocarbon chains, $[Ru(bipy)_2(dhbipy)]^{2+}$ and transient phenothiazine derivative cation radical $(PTD^+)$ in the cationic vesicle were studied. Transient absorption spectra of cation radical of phenothiazine derivative in the vesicle system containing the $Ru^{2+}$ complex, $[Ru(bipy)_2(dhbipy)]^{2+}$, (1) as sensitizer and phenothiazine derivative as electron donor was observed by XeCl excimer laser photolysis system. Thus the excited ruthenium complex would be quenched by phenothiazine derivative(PTD) reductively in the vesicle system. The quenching rate constant($K_Q$) of $Ru^{2+}$ with two long hydrocarbon chains in the vesicle by PTD was $9.6{\times}10^8M^{-1}S^{-1}$. The absorption decay kinetics showed that lifetime of phenothiazine derivative cation radical is a value in the 4-8m sec range.

Preparation and Photophysical Properties of 4-(9-Anthrylethenyl)-4'-methyl-2,2'-bipyridine and Its Ruthenium Bipyridyl Complex $[Ru(bpy)_2(t-aemb)](PF_6)_2$

  • 배은영;신은주
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.86-93
    • /
    • 1998
  • Trans-4-(9-anthrylethenyl)-4'-methyl-2,2'-bipyridine(t-aemb) and its bipyridyl Ru complex $[Ru(bpy)_2(t-aemb)](PF_6)_2$ (bpy=2,2'-bipyridine) 1 have been prepared and their excited state properties have been studied. t-Aemb exhibits solvent-dependent fluorescence and efficient trans→cis photoisomerization. 1 shows very weak fluorescence and its photochemically reactive. Fluorescence is wavelength-dependent. While the excitation into the MLCT band makes the complex fluorescent, direct absorption by the t-aemb ligand leads to the photoreaction of t-aemb ligand and no fluorescence is observed. 1 is considered to behave in part as bichromophoric molecule in which $[Ru(bpy)_3](PF_6)_2$ and anthryl group are covalently linked by ethenyl linkage. Because anthryl moiety is not effectively conjugated with bipyridylethenyl moiety due to steric hindrance, weak fluorescence can be explained due to the efficient energy or electron transfer.

Fluorescence Intensity Changes for Anthrylazacrown Ethers by Paramagnetic Metal Cations

  • 장정호;김해중;박중희;신영국;정용석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.796-800
    • /
    • 1999
  • Three anthrylazacrown ethers in which the anthracene fluorophore π system is separated from the electron donor atoms by one methylene group were synthesized, and their photophysical study was accomplished. These fluorescent compounds showed a maximum fluorescence intensity at pH=5 in aqueous solutions and a decrease in fluorescence intensity upon binding of paramagnetic metal cations (Mn 2+ (d 5 ), Co 2+ (d 7 ), Cu 2+ (d 9 )). The decrease in fluorescence intensity may be attributed to the paramagnetic effect of metal cations to deactivate the excited state by the nonradiative quenching process. The benzylic nitrogen was found to play an important role in changing fluorescence intensity. From the observed linear Stern-Volmer plot and the fluorescence lifetime independence of the presence of metal ions, it was inferred that the chelation enhanced fluorescence quenching (CHEQ) mechanism in the system is a ground state static quenching process. Enhanced fluorescence was also observed when an excess Na + ion was added to the quenched aqueous solution, and it was attributed to cation displacement of a complexed fluorescence quencher.

Photophysical Properties of Khellin-Dimethylfumarate C$_4$-Cyclomonoadduct

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.458-461
    • /
    • 1986
  • The fluorescence intensity of khellin-dimethylfumarate C$_4$-cycloadduct (KDF) is very sensitive to temperature and to the nature of solvents, especially hydrogen-bonding ability. The fluorescence quantum yields of KDF in ethanol and isopentane at 77K are 0.73 and 0.54, respectively, both of which are much larger than the room temperature values. The phosphorescence lifetime is very long and decreases with decreasing the solvent polarity. The phosphorescence and fluorescence quantum yield ratio is very small and decreases with decreasing solvent polarity. The solvent relaxation plays an important role in the excited states of KDF. The internal conversion is a major decay process of the excited singlet state of KDF in all the solvents used at room temperature.

Synthesis, Photophysical and Aggregation Properties of Novel Phenanthrene and Pyrene Substituted Phthalocyanines

  • Kumar, Rangaraju Satish;Son, Young-A
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.792-797
    • /
    • 2018
  • We have explained the synthesis of novel phenanthrene and pyrene substituted phthalocyanines (PC-PHE and PC-PYR) and fully confirmed the structures by its spectral, photo physical and elemental analysis. For these phthalocyanines we checked the UV-Visible absorbance in PGMEA and chloroform and transmittance checked in PGMEA. The transmittance results suggested that these phthalocyanines are showing more than 90% transmittance at the 450-550 nm region. These synthesized molecules are nicely soluble in almost all industrial solvents. We checked the aggregation property of these phthalocyanines in PGMEA, and the results suggested no any aggregation for these molecules in PGMEA. The thermogravimetric analysis results concluded that PC-PHE and PC-PYR had high thermal stability. All studies explain that these new phthalocyanines are more suitable for LCD green color filter application.

Photophysical properties of Khellin

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.341-344
    • /
    • 1987
  • The fluorescence quantum yield of khellin is sensitive to temperature and to the nature of solvents, especially the proton-donating ability in solute-to-solvent hydrogen bonding. The intersystem crossing quantum yields are 0.4 and 0.15 in acetonitrile and ethanol, respectively. The fluorescence quantum yields in ethanol and isopentane at 77 K are 0.61 and 0.07, respectively, both of which are much larger than the values at room temperature. The phosphorescence lifetime is relatively long and decreases with decreasing solvent polarity. The phosphorescence to fluorescence quantum yield ratio is very small and remains unchanged in various solvents. The results suggest that internal conversion is an important decay channel of the excited singlet state of khellin, especially in the hydrogen-bonding hydroxyl solvents.

Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device (청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성)

  • Chun, Ji-Yun;Han, Jin-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Synthesis and photovoltaic performance of novel ionic dyes for the dye-sensitized solar cells (신규 유기염료를 적용한 염료감응 태양전지의 광전변환거동)

  • Jung, Mi Ran;Lee, Jeong Gwan;Kim, Sang Ah;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.120.2-120.2
    • /
    • 2011
  • The improvement of solar energy-to-electricity conversion efficiency has continued to be an important research area of dye-sensitized solar cells (DSSCs). The mechanism of DSSCs is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2 or ZnO. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO band gaps of dye moleculed in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for DSSC. We believe that practically useful organic dye photosensitizers can be produced by exploiting electron donor/acceptor system with proper length of ${\pi}$-conjugation in a chromophore to control the absorption wavelength and enhance the photovoltaic performance. In this research, We designed and synthesized organic dyes also investigated the photoelectrochemical properties of a series of ionic dyes in DSSCs.

  • PDF