• Title/Summary/Keyword: Photophysical

Search Result 101, Processing Time 0.024 seconds

Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

  • Lee, Junghwa;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.881-885
    • /
    • 2014
  • Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ~300 fs component observed frequently in ESIPT dynamics arises from the $S_2{\rightarrow}S_1$ internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in $S_1$ state to the keto isomer in $S_2$ state.

The study of new host materials for solution-processed green organic electrophosphorescence

  • Jung, Sung-Hyun;Lee, Ho-Jae;Kim, Young-Hoon;Kim, Hyung-Sun;Yu, Eun-Sun;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.454-457
    • /
    • 2008
  • We report the syntheses, photophysical properties and device performances of solution processible host material for green-phosphorescent OLEDs. The butterfly-shaped new host materials with nonconjugated linkage of carbazole and fluorene moieties have large triple energy band gap around 2.8 eV. All of the EL devices exhibited turn-on voltages in the range of 4.8-5.0 V. GH-4 exhibited the best performance with a maximum current efficiency and power efficiency of 21.1 cd/A and 7.9 lm/W.

  • PDF

Experimentally Measured Rotational Reorientation Time of Coumarin 6 Laser Dye in Ethanol and Acetonitrile Solvents

  • Renuka, C.G.;Raikar, U.S.
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.119-122
    • /
    • 2005
  • The photophysical properties of coumarin 6 laser dye have been studied in two solvents; ethanol and acetonitrile using steady-state fluorescence depolarization technique. The experimentally measured reorientation time of coumarin 6 is more or less the same in given solvents at particular temperature. It is found that coumarin 6 rotates slower in acetonitrile than in ethanol especially at higher values of viscosity over temperature. We also measure the ground and excited state dipole moments of coumarin 6 by solvent perturbation method. The results found that excited state dipole moment is greater than ground state dipole moment, which indicates that excited state is more polar than the ground state.

  • PDF

Fluorescence Spectroscopic and Atomic Force Microscopic Studies on the Microstructure of Polyimide/Silica-Titania Ternary Hybrid Composites

  • Park, Hae-Dong;Ahn, Ki-Youl;Mohammad A. Wahab;Jo, Nam-Ju;Kim, Il;Kim, Gyuhyun;Lee, Won-Ki;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.172-177
    • /
    • 2003
  • Biphenyltetracarboximide-phenylene diamine polyimide/silica-titania ternary hybrid composites were Prepared by thermal imidization and sol-gel reaction. Fluorescence spectroscopic, scanning electron microscopy, and atomic force microscopy studies revealed that the addition of small amount of titania showed profound effects on the microstructure and photophysical behaviors of polyimide/silica hybrid composites, when the content of silica-titania mixture was small or when the ratio of silica to titania in the mixture was high.

Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach

  • Kim, Hyungjoo;Lee, Sehoon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.83-88
    • /
    • 2013
  • Rhodamine dyes have been studied in various scientific areas due to their excellent photophysical properties. In particular, these rhodamine dyes are one of the most famous fluorophores as signal unit in chemosensor study. This is related to spirolactam ring system in rhodamine dyes. When the spirolactam ring is closed, there is nonfluorescence and colorless. Whereas, ring-opening of the corresponding spirolactam induces strong fluorescence and color. These absorption and emission changes are related to structural changes as well as electron energy potential levels such as HOMO and LUMO values. In this study, two different structures of rhodamine 6G hydrazide depending on the spirolactam ring system were investigated using absorption measurement, electrochemical measurement and computational calculations.

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

PHOTOPHYSICAL AND OPTICAL PROBE PROPERTIES OF 1-(p-N,N-DIMETHYLAMINOPHENYL)-4-PHENYL-2-METHYL-1E,3E-BUTADIENE

  • Singh, A.K.;Krishna, T.S.R.
    • Journal of Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • A hitherto unknown diphenylbutadiene analog viz. 1-(p-N,N-dimethylaminophenyl)-4-phenyl-2-methyl-1E,3E-butadiene (10) has been prepared and its absorption, excitation, and fluorescent emission properties in different media including various organic solvents and aqueous bovine serum albumin (BSA) have been studied. For comparision, these properties have also been investigated for the parent diphenylbutadiene (2). Diene 10 exhibits solvent polarity/polarizability-sensitive fluorescence properties ($\lambda$$_{max}$, $\Phi$$_f$, $\tau$$_f$, K$_f$, f). It also binds to the hydrophobic domains of aqueous bovine serum albumin (BSA) with a binding constant of 3.89 x 10$^4$ M$^{-1}$. The relative fluorescence quantum yield of 10 increases, while, the fluorescence lifetime decreases with increasing concentration of-BSA. The results highlight the polar character of the singlet excited state of diphenylpolyenes and the utility of 10 as fluorescence probe for studying microenvironments of organized assemblies and biological supramolecular structures.

  • PDF

Fluorescence Characterization of LaRC PETI-5, BMI, and LaRC PETI-5/BMI Blends

  • Cho, Donghwan;Yang, Gyeongmo
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • In the present study, the fluorescence behavior ova phenylethynyl-terminated imide (LaRC PETI-5) resin, a bismaleimide (BMI) resin, and various LaRC PETI-5/BMI blends with different blend compositions has been characterized as a function of heat-treatment temperature, using a steady-state fluorescence technique with a front-face illumination method far solid-state films. It is observed that there are distinguishable changes in the spectral shape, size, and position of fluorescence with varying heat-treatment temperature in the pure and blend samples. The result is qualitatively explained in terms of charge transfer complex formation as well as microenvironmental change with local mobility and viscosity occurring in the LaRC PETI-5, BMI, and their blends during the cure process. The result also implies that a steady-state fluorescence technique may be a useful tool to understand the processing conditions of polyimides and their blends in the film form on the basis of their thermo-photophysical responses.

Induced Eye-detectable Blue Emission of Triazolyl Derivatives via Selective Photodecomposition of Chloroform under UV Irradiation at 365 nm

  • Lee, Byoung-Kwan;Yoon, Jun Hee;Yoon, Sangwoon;Cho, Byoung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.135-140
    • /
    • 2014
  • A bent-shape triazolyl derivative was synthesized via click chemistry, and its photophysical property was investigated in various solvents. In contrast to the invisible ultraviolet emission of other solutions, the chloroform solution exhibited a blue light emission at 460 nm. Furthermore, the blue fluorescence intensified as the UV exposure time at 365 nm increased. On the basis of $^1H$-NMR, pH paper, and acid-addition studies, we confirmed that chloroform was decomposed into HCl with the aid of the triazolyl derivative. The density functional theory calculations suggested that the eye-detectable blue fluorescence was attributed to an intramolecular charge transfer process of the protonated triazolyl derivative in the chloroform solution.