• Title/Summary/Keyword: Photonic Sensor

Search Result 54, Processing Time 0.037 seconds

Highly Sensitive Integrated Photonic Temperature Sensor Exploiting a Polymeric Microring Resonator (폴리머 마이크로링 공진기를 이용한 고감도 집적광학형 온도센서)

  • Lee, Hak-Soon;Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.224-228
    • /
    • 2008
  • A highly sensitive integrated photonic temperature sensor was proposed and developed incorporating a polymeric microring resonator. The change in the ambient temperature was estimated by observing the shift in the resonant wavelength of the resonator induced via the thermooptic effect. For the purpose of enhancing its sensitivity, the sensor was built by implementing a polymeric resonator exhibiting a high thermooptic coefficient on a silicon substrate with a small coefficient of thermal expansion. For the range of from $20^{\circ}C$ to $30^{\circ}C$ near the room temperature, the fabricated sensor yielded a sensitivity of as high as 165 ${\pm}/^{\circ}C$ and a resolution of better than $0.1^{\circ}C$. And its performance was found to be hardly affected by the variation in the refractive index of the target analyte, which was applied to the surface of the sensor. It is hence expected that the sensor could be integrated with other refractormetric optical sensors, thereby compensating for the fatal error caused by the change in the ambient temperature.

Design of Bio-Inspired Morpho Butterfly Structures for Optical Sensor Applications (광학 센서 응용을 위한 모르포 나비 날개 모방 구조 설계)

  • Kim, Hyeon Myeong;Lee, Gil Ju;Kim, Min Seok;Kim, Kyu Jung;Song, Young Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.357-362
    • /
    • 2016
  • Various species of insects display vivid colors, widely known as 'structural color' due to their optical interference. Morpho butterflies are famous for their brilliant iridescent colors, which arise from the photonic-nanostructures of optical interference on their wings. In this paper, we outline the results of a comparative study of the optical properties of bio-inspired Morpho butterfly structures with the widely known Distributed Bragg Reflector (DBR), conducted using a rigorous coupled-wave analysis (RCWA) method for the two structures. Almost analogous tendencies were observed for both Morpho and DBR structures. With variation in the surrounding media, however, Morpho structures showed an obvious peak shift while no significant changes were observed in DBR, which can be applicable.

Lithium Niobate (LiNbO3) Photonic Electric-Field Sensors

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.194-213
    • /
    • 2022
  • This study comprehensively reviewed four types of integrated-optic electric-field sensors based on titanium diffused lithium-niobate waveguides: symmetric and asymmetric Mach-Zehnder interferometers, 1×2 directional couplers, and Y-fed balanced-bridge Mach-Zehnder interferometers. First, we briefly explain the crystal properties and electro-optic effect of lithium niobate and the waveguide fabrication process. We theoretically analyzed the key parameters and operating principles of each sensor and antennas. We also describe and compare the design, simulation, implementation, and performance tests: dc and ac characteristics, frequency response, dynamic range, and sensitivity. The experimental results revealed that the sensitivity of the sensor based on the Y-fed balanced bridge Mach-Zehnder interferometer (YBB-MZI) was higher than that of the other types of sensors.

Optical Characterization of Smart Dust Based on Photonic Crystals and Its Sensing Applications

  • Kim, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2011
  • Various types of smart dust based on photonic crystal exhibiting unique reflectivity were successfully obtained by an electrochemical etching of silicon wafer using square wave currents. Smart dust containing Bragg structure obtained from the sonication of DBR porous silicon film in solution retained its optical reflectivity. Field emission scanning electron micrograph (FE-SEM) was used to measure the size of optically encoded smart dust and its size can be tuned from few hundred nanometers to few microns depending on the duration of sonication. Optical characteristics of smart dust were used to investigate a possible applications such as chemical sensors.

Polarimetric Fiber Pressure Sensor Incorporating Polarization-Diversity-Loop-Based Sagnac Interferometer (편광상이 고리 구조 기반 사냑 간섭계를 이용한 편광 간섭형 광섬유 압력 센서)

  • Ryu, Uh-Chan;Choi, Sung Wook;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we demonstrated a polarimetric fiber pressure sensor using a polarization-diversity-loop-based Sagnac interferometer(PDLSI) composed of polarization-maintaining fiber(PMF) and a fiber Bragg grating(FBG). In order to compare the pressure sensitivity for various kinds of PMF, three kinds of bow-tie PMF were employed as sensor heads. The maximum pressure sensitivity was measured as approximately -15.07nm/MPa, and an R2 value to represent sensor linearity was measured as ~0.992 at the sensor system using corresponding PMF over a pressure range of 0-0.3MPa. An FBG was utilized and located adjacent to the PMF segment for compensating temperature-induced errors in the measurement of pressure. The pressure sensitivity of the proposed sensor was improved by approximately four times compared with the previously reported pressure sensor based on polarization-maintaining photonic crystal fiber.

Photonic Glucose Sensor Using a Vertically Coupled Polymeric Microdisk Resonator (수직 결합형 폴리머 마이크로디스크 공진기를 이용한 광학적 글루코스 센서)

  • Kim, Gun-Duk;Son, Geun-Sik;Lee, Hak-Soon;Kim, K-Do;Lee, Sang-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1412-1415
    • /
    • 2008
  • A glucose biosensor using a microdisk resonator in polymeric waveguides was developed by observing either the shift in the resonant wavelength or the variation in the optical power. The deformation in the transfer curve of the vertically coupled resonator sensor resulting from the variation in the disk-to-ring coupling, which was incurred by the application of the target analyze, was suppressed. And the refractive index of the polymeric waveguide was devised to closely follow that of the analyze itself for enhancing the sensitivity of the sensor. The sensitivity and measurement range were observed to be respectively 0.14 pm/(mg/dL) and 1500 mg/dL (theoretically up to 4700 mg/dL, for the wavelength shift method and 0.04 dB/(mg/dU and 140 mg/dL the power variation scheme.

Investigation of an Arc-induced Long Period Fiber Grating Inscribed in a Photonic Crystal Fiber with Two Large Air Holes

  • Kim, Sun-Duck;Kim, Gil-Hwan;Hwang, Kyu-Jin;Lim, Sun-Do;Lee, Kwan-Il;Kim, Sang-Hyuck;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.428-433
    • /
    • 2009
  • A photonic crystal fiber with two large air holes outside the holey cladding region is fabricated to induce an effective long periodic grating (LPG) in the core by an electric arc discharge. We believe that the two large air holes lead to the asymmetric perturbation in the core under the electric arc discharge, thereby introducing the coupling to the first higher-order mode. The transmission characteristics of the PCF with the LPG for the external perturbation such as strain, curvature, and temperature are also investigated. It was found that the shift of resonance peak in the transmission spectrum depends on the bending direction. The curvature of 8.55 $m^{-1}$ results in the center wavelength shifts of 1.8, 4.3, and 11 nm for a vertical, diagonal, and horizontal direction of the curvature to the large air-hole alignment, respectively.

Characteristics Analysis of Total Internal Reflection-based Dielectric Multi-layer Sensor Using Plasmonics Phenomena (플라즈모닉스 현상을 이용한 전반사 기반 다층 유전체 박막 센서의 특성 분석)

  • Kim, Hong-Seung;Lee, Tae-Kyeong;Kim, Doo-Gun;Jung, You-Ra;Oh, Geum-Yoon;Lee, Byeong-Hyeon;Ki, Hyun-Chul;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.516-520
    • /
    • 2012
  • In this paper, we have theoretically analyzed and designed a dielectric multi-layer sensor with a SPR (surface plasmon resonance) using analytical calculation and FDTD (finite difference time-domain) methods. The proposed structure is composed of periodic layer and thin metal film. It has many advantages. One of that is a high sensitivity of the SPR. Another is a high Q-factor of the characteristics in the PhC (photonic crystals) micro-cavity structure. The incident light has double resonance characteristics, because the filtered light by PhC structure, dielectric multi-layer, is met the thin metal film for SPR effect. We have also observed the change of resonance characteristics according to the variation of effective index on the metal film.