• Title/Summary/Keyword: Photonic Bandgap device

Search Result 3, Processing Time 0.018 seconds

Fabrication of Master Replication by Nanoimprint Lithography (나노 임프린트 리소그라피에 의한 마스터 복제 공정)

  • Jeong, Myung-Yung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1078-1082
    • /
    • 2003
  • A feasibility study for the fabrication of master replication with nanostructures by Nanoimprint Lithography (NIL) was investigated for application of polymer Photonic Bandgap (PBG) devices used in photonic IC. Large area gratings of $9{\times}15(mm^2)$ with p = 400 nm was successfully embossed on PMMA on silicon wafer and the embossing parameters (temperature, pressure, time) were established. A precise control of $O_2$ plasma Reactive Ion Etching (RIE) process time allowed window opening over the whole area despite the presence of wafer bending. Master replication with aspect ratio 1 was successfully fabricated, but master replication with aspect ratio 3 needs to optimize parameters. All replications were done in a NIL process.

  • PDF

Bandgap Tuning in InGaAs/InGaAsP Laser Structure by Quantum Well Intermixing

  • Nah Jongbum;Kam PatrickLi
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.159-161
    • /
    • 2005
  • We report the selective area bandgap tuning of multiple quantum well structures by an impurity free vacancy induced quantum well intermixing technique. A 3dB waveguide directional coupler was fabricated in the disordered section of an intermixed quantum well sample as a demonstration of photonic device applications.

Fabrication of waveguide filter using quantum well intermixing (다중양자우물의 상호섞임 현상을 이용한 광도파로 필터의 제작)

  • 김항로;여덕호;윤경훈;김성준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.268-269
    • /
    • 2000
  • We demonstrate a polarization insensitive waveguide filter using quantum well intermixing(QWI). The bandgap of epitaxial layer is modified from 1.55${\mu}{\textrm}{m}$ to 1.40${\mu}{\textrm}{m}$ using QWI and a Bragg grating filter is demonstrated using electron beam lithography technology. The fabricated waveguide filter has a 70% reflection efficiency and a 1.46nm filter bandwidth. Furthermore polarization insensitive transmission characteristics are observed. The device can be applied to photonic integrated circuits(PIC).

  • PDF