• 제목/요약/키워드: Photon spectra

검색결과 105건 처리시간 0.021초

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

Excited State Intramolecular Proton Transfer and Physical Properties of 7-Hydroxyquinoline

  • Kang Wee-Kyeong;Cho Sung-June;Lee Minyung;Kim Dong-Ho;Ryoo Ryong;Jung Kyung-Hoon;Jang Du-Jeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권2호
    • /
    • pp.140-145
    • /
    • 1992
  • The excited state intramolecular proton transfer and physical properties of 7-hydroxyquinoline are studied in various solutions and heterogeneous systems by measuring steady state and time-resolved fluorescence, reflection and NMR spectra. Proton transfer is observed only in protic solvents owing to its requirement of hydrogen-bonded solvent bridge for proton relay transfer. The activation energies of the proton transfer are 2.3 and 5.4 kJ/mol in $CH_3OH$ and in $CH_3OD$, respectively. Dimers of normal molecules are stable in microcrystalline powder form and undergo an extremely fast concerted double proton transfer upon absorption of a photon, consequently forming dimers of tautomer molecules. In the supercage of zeolite NaY, its tautomeric form is stable in the ground state and does not show any proton transfer.

Photoisomerization of Symmetric Carbocyanines

  • 민형식;강유남;박정희
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권7호
    • /
    • pp.747-753
    • /
    • 1998
  • The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A.;Asad, J.;Humaid, M.;Musleh, H.;Shaat, S.K.K.;Ramadan, Kh;Sayyed, M.I.;Alajerami, Y.;Aldahoudi, N.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3058-3067
    • /
    • 2021
  • Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.392-399
    • /
    • 2019
  • A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.

Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation

  • Kim, Minho;Bae, Jae Keon;Hong, Bong Hwan;Kim, Kyeong Min;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.539-545
    • /
    • 2019
  • Yttrium-90 is a useful therapeutic radioisotope for tumor treatment because of its high-energy-emitting beta rays. However, it has been difficult to select appropriate collimators and main energy windows for Y-90 Bremsstrahlung imaging using gamma cameras because of the broad energy spectra of Y-90. We used a Monte Carlo simulation to investigate the effects of collimator selection and energy windows on Y-90 Bremsstrahlung imaging. We considered both MELP and HE collimators. Various phantoms were employed in the simulation to determine the main energy window using primary-to-scatter ratios (PSRs). Imaging performance was evaluated using spatial resolution indices, imaging counts, scatter fractions, and contrast-to-noise ratios. Collimator choice slightly affected energy spectrum shapes and improved PSRs. The HE collimator performed better than the MELP collimator on all imaging performance indices (except for imaging count). We observed minor differences in SR and SF values for the HE collimator among the five simulated energy windows. The combination of an HE collimator and improved-PSR energy window produced the best CNR value. In conclusion, appropriate collimator selection is an important component of Bremsstrahlung Y-90 photon imaging and main energy window determination. We found HE collimators to be more appropriate for improving the imaging performance of Bremsstrahlung Y-90 photons.

X-RAY PROPERTIES OF THE PULSAR PSR J0205+6449 IN 3C 58

  • Kim, Minjun;An, Hongjun
    • 천문학회지
    • /
    • 제54권1호
    • /
    • pp.1-8
    • /
    • 2021
  • We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency ν = 15.20102357(9) s-1 and its derivative $\dot{\nu}=-4.5(1){\times}10^{-11}\;s^{-2}$ during the observation period, and model the 2-30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2-30 keV flux F2-30 keV = 7.3±0.6 × 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to fit the Chandra spectra and infer the surface temperature T∞ and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 × 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800-5600 yrs.

양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질 (Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions)

  • 정동헌;유정은;이기영
    • 한국표면공학회지
    • /
    • 제56권4호
    • /
    • pp.265-272
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

합성용질확산법에 의한 GaP결정의 성장과 전기루미네센스 특성 (On the Crystal Growth of Gap by Synthesis Solute Diffusion Method and Electroluminescence Properties.)

  • 김선태;문동찬
    • 한국재료학회지
    • /
    • 제3권2호
    • /
    • pp.121-130
    • /
    • 1993
  • 합성용질확산법으로 GaP 단결정을 성장시키고, 몇가지 성질을 조사하였다. 결정성장용 석영관을 전기로내에서 1.75mm/day의 속도로 하강시킴으로써 양질의 GaP 단결정을 성장하였다. 에치피트 밀도는 결정의 성장축 방향으로 3.8 ${\times}{10^4}$c$m^{-2}$부터 2.3 ${\times}{10^5}$c$m^2$이었다. 에너지갭의 온도의존성은 실험적으로 $E_g$(T)=[2.3383-(6.082${\times}{10^{-4}}$)$T^2$(373.096+T)eV로 구하여졌다. 저온에서의 광루미네센스 스펙트럼은 구속된 여기자의 복사재결합과 재결합 과정에 포논의 참여로 인하여 에너지갭 부근의 복잡한 선 스펙트럼이 나타났다. n형의 GaP내에서 Zn의 확산깊이는 확산시간의 제곱근에 비례하였으며, 확산계수의 온도의존성은 D(T)=3.2${\times}{10^3}$ exp(-3.486/KbTc$m^2$/sec이었다. p-nGaP 동종접합다이오드의 전기루미제센스 스펙트럼은 깊은 준위의 도너인 Zn-O 복합중심(complex center)과 Zn가 형성한 역셉터 준위사이의 도너-억셉터 쌍 재결합 천이에 의한 630nm의 발광과 에너지갭 부근의 케리어 재결합 처이에 의한 550nm의 발광으로 구성되었으며, 100mA보다 낮은 전류 영역에서 광자의 방출은 bane-filling 과정으로 이루어 진다.

  • PDF