• Title/Summary/Keyword: Photon dosimetry

Search Result 120, Processing Time 0.023 seconds

A Study on the Optical Influence by Photosensitizer in Vitro (In Vitro에서 광증감제에 의한 광학적 영향에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.182-190
    • /
    • 2005
  • The propagation of light radiation within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is important. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I\;/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements.

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Characteristics of 23 MV Photon Beam from a Mevatron KD 8067 Dual Energy Linear Accelerator (Mevatron KD 8067 선형가속기의 23 MV 광자선의 특성)

  • Kim, Ok-Bae;Choi, Tae-Jin;Kim, Young-Hoon
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.115-124
    • /
    • 1990
  • The characteristics of 23 MV photon beam have been presented with respect to clinical parameters of central axis depth dose, tissue-maxi mum ratios, scatter-maximum ratios, surface dose and scatter correction factors. The nominal accelerating potential was found to be $18.5\pm0.5$ MV on the central axis. The half-value layer (HVL) of this photon beam was measured with narrow beam geometry from central axis, and it has been showed the thickness of $24.5\;g/cm^2$. The tissue-maximum ratio values have been determined from measured percentage depth dose data. In our experimental dosimetry, the surface dose of maximum showed only $9.6\%$ of maximum dose at $10\times10\;cm^2$, 100 cm SSD, without blocking tray in. The TMR'S of $0\times0$ field size have been determined to get average $2.3\%$ uncertainties from three different methodis; are zero effective attenuation coefficient, non-ilnear least square fit of TMR's data and effective linear attenuation coefficient from the HVL of 23 MV photon beams of dual energy linear accelerator.

  • PDF

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING

  • Olsher Richard H.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of variance reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered in the areas of source definition, skyshine, streaming, and transmission.

Validation of MCNPX with Experimental Results of Mass Attenuation Coefficients for Cement, Gypsum and Mixture

  • Tekin, Huseyin Ozan;Singh, Viswanath P.;Manici, Tugba;Altunsoy, Elif Ebru
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.3
    • /
    • pp.154-157
    • /
    • 2017
  • Background: Shielding properties of compound or mixture is presented in terms of mass attenuation coefficients using Monte Carlo simulation. Mass attenuation coefficients of cement, gypsum and the mixture of gypsum and $PbCO_3$ has been investigated using monte carlo MCNPX. Materials and Methods: The mass attenuation coefficients of cement, gypsum and the mixture of gypsum and $PbCO_3$ were calculated for photon energies 365.5, 661.6, 1,173.2, and 1,332.5 keV energies. Results and Discussion: The simulated values of mass attenuation coefficients were compared avaialable experimental results, theoretical values by XCOM and found good comparability of the results. Conclusion: Standard simulation geometry used in the present investigation would be very useful for various types of sample for shielding and dosimetry applications.

Determination of TRS-398 Quality Factors for Cs-137 Gamma Rays in Reference Dosimetry (Cs-137 감마선의 선량측정을 위한 TRS-398 선질인자 결정에 관한 연구)

  • Kang, Sang Koo;Rhee, Dong Joo;Kang, Yeong Rok;Kim, Jeung Kee;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • The Cs-137 irradiator is widely used to irradiate biological samples for radiobiological research. To obtain the accurate outcomes, correct measurements of the delivered absorbed dose to a sample is important. The IAEA protocols such as TRS-277 and TRS-398 were recommended for the Cs-137 reference dosimetry. However in TRS-398 protocol, currently known as the most practical dosimetry protocol, the quality factor ($k_{Q,Q_0}$) for Cs-137 gamma rays is not suggested. Therefore, the use of TRS-398 protocol is currently unavailable for the Cs-137 dosimetry directly. The calculation method previously introduced for high energy photon beams in radiotherapy was used for deriving the Cs-137 beam qualities ($k_{Q,Q_0}$) for the 15 commercially available farmer type ionization chambers in this study. In conclusion, $k_{Q,Q_0}$ values were ranged from 0.998 to 1.002 for Cs-137 gamma rays. These results can be used as the reference and dosimeter calibrations for Cs-137 gamma rays in the future radiobiological researches.

Three dimensional Dose reconstruction based on transit dose measurement and Monte Carlo calculation (조사문 선량 분포와 Monte Carlo 계산을 이용한 삼차원 선량 재구성에 관한 연구)

  • Park, Dal;Yeo, In-Hwan;Kim, Dae-Yong;An, Yong-Chan;Heo, Seung-Jae
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.91-99
    • /
    • 2000
  • This is a preliminary study for developing the method of the dose reconstruction in the patients, irradiated by mega-voltage photon beams from the linear accelerator, using the transit dose distributions. In this study we present the method of three-dimensional dose reconstruction and evaluate the method by computer simulation. To acquire the dose distributions in the patients (or phantoms) we first calculate the differences between the doses at the arbitrary points in the patients and the doses at the corresponding points where the transit doses are measured. Then, we can get the dose in the patients from the measured transit dose and the calculated value of the difference. The dose differences are calculated by applying the inverse square law and using the linear attenuation coefficient. The scatter to primary dose ratios, which are calculated by the Monte Carlo program using the CT data of the patient (or phantoms), are also used in the calculations. For the evaluation of this method we used various kinds of homogeneous and inhomogeneous phantoms and calculated the transit dose distributions with the Monte Carlo program. From the distributions we reconstructed the dose distributions in the phantom. We used mono-energy Photon beam of 1.5MeV and Monte Carlo program EGS4. The comparison between the dose distributions reconstructed using the method and the distributions calculated by the Monte Carlo program was done. They agreed within errors of -4%∼+2%. This method can be used to predict the dose distributions in the patient

  • PDF