• Title/Summary/Keyword: Photon dosimetry

Search Result 118, Processing Time 0.019 seconds

The Accuracy Evaluation according to Dose Delivery Interruption and Restart for Volumetric Modulated Arc Therapy (용적변조회전 방사선치료에서 선량전달의 중단 및 재시작에 따른 정확성 평가)

  • Lee, Dong Hyung;Bae, Sun Myung;Kwak, Jung Won;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • Purpose: The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Materials and Methods: Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. Results: The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. Conclusion: As a result, We could make sure that the interruption of this investgation are not enough to seriously affect dose delivery of VMAT by analyzing the measured data. But this investigation did not reflect all cases about interruptions and errors regarding the movement of a gantry rotation, collimator and patient So, We should continuously maintain a treatment machine and program to deliver the accurate dose when we perform the VMAT for the many kinds of cancer patients.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Dose Distribution and Design of Dynamic Wedge Filter for 3D Conformal Radiotherapy (방사선 입체조형치료를 위한 동적쐐기여과판의 고안과 조직내 선량분포 특성)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.77-88
    • /
    • 1998
  • Wedge shaped isodoses are desired in a number of clinical situations. Hard wedge filters have provided nominal angled isodoses with dosimetric consequences of beam hardening, increased peripheral dosing, nonidealized gradients at deep depths along with the practical consequendes of filter handling and placement problems. Dynamic wedging uses a combination of a moving collimator and changing monitor dose to achieve angled isodoses. The segmented treatment tables(STT) that monitor unit setting by every distance of moving collimator, was induced by numerical formular. The characteristics of dynamic wedge by STT compared with real dosimetry. Methods and Materials : The accelerator CLINAC 2100C/D at Yonsei Cancer Center has two photon energies (6MV and 10MV), currently with dynamic wedge angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$. The segmented treatment tables(STT) that drive the collimator in concert with a changing monitor unit are unique for field sizes ranging from 4.0cm to 20.0cm in 0.5cm steps. Transmission wedge factors were measured for each STT with an standard ion chamber. Isodose profiles, isodose curves, percentage depth dose for dynamic wedge filters were measured with film dosimetry. Dynamic wedge angle by STT was well coincident with film dosimetry. Percent depth doses were found to be closer to open field but more shallow than hard wedge filter. The wedge transmission factor were decreased by increased the wedge angle and more higher than hard wedge filters. Dynamic wedging probided more consistent gradients across the field compared with hard wedge filters. Dynamic wedging has practical and dosimetric advantages over hard filters for rapid setup and keeping from table collisions. Dynamic wedge filters are positive replacement for hard filters and introduction of dynamic conformal radiotherapy and intensity modulation radiotherapy in a future.

  • PDF

A Study of Characteristics of MicroLion Liquid Ionization Chamber for 6 MV Photon Beam (6 MV 광자빔에 대한 MicroLion 액체이온함의 특성 연구)

  • Choi, Sang-Hyoun;Huh, Hyun-Do;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Kim, Woo-Chul;Kim, Hun-Jeong;Shin, Dong-Oh;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.216-223
    • /
    • 2011
  • Recently PTW developed a MicroLion liquid ionization chamber which is water_equivalent and has a small sensitive volume of $0.002cm^3$. The aim of this work is to investigate such dosimetric characteristics as dose linearity, dose rate dependency, spatial resolution, and output factors of the chamber for the external radiotherapy photon beam. The results were compared to those of Semiflex chamber, Pinpoint chamber and Diode chamber with the sensitive volumes of $0.125cm^3$, $0.03cm^3$ and $0.0025cm^3$, respectively and evaluated to be suitable for small fields. This study was performed in the 6MV photon energy from a Varian 2300 C/D linac accelerator and the MP3 water phantom (PTW, Freiburg) was used. Penumbras in the varios field sizes ranged from $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ were used to evaluate the spatial resolution. Output factors were measured in the field sizes of $0.5{\times}0.5$ to $40{\times}40cm^2$. Readings of the chamber was linearly proportional to dose. Dose rate dependency was measured from 100 MU/min to 600 MU/min, showed a maximum difference of 5.0%, and outputs decreased with dose rates. The spatial resolutions determined with comparing profiles for the field sizes of $0.5{\times}0.5cm^2$ to $10{\times}10cm^2$ agreed between every detector except the Semiflex chamber to within 2%. Outputs of detectors were compared to that of Semiflex chamber and showed good agreements within 2% for every chamber. This study shows that MicroLion chamber characterized by a high signal-to-noise ratio and water equivalence could be suitable for the small field dosimetry.

Dose Distribution According to the Tissue Composition Using Wedge Filter by Radiochromic Film (쐐기필터 사용 시 레디오크로믹 필름을 이용한 조직에 따른 선량분포 연구)

  • Kim, Yon-Lae;Lee, Jeong-Woo;Park, Byung-Moon;Jung, Jae-Yong;Park, Ji-Yeon;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The purpose of this study is to analyze the dose distribution when wedge filter is used in the various tissue electron density materials. The dose distribution was assessed that the enhanced dynamic wedge filter and physical wedge filter were used in the solid water phantom, cork phantom, and air cavity. The film dosimetry was suitable simple to measure 2D dose distribution. Therefore, the radiochromic films (Gafchromic EBT2, ISP, NJ, USA) were selected to measure and to analyze the dose distributions. A linear accelerator using 6 MV photon were irradiated to field size of $10{\times}10cm^2$ with 400 MUs. The dose distributions of EBT2 films were analyzed the in-field area and penumbra regions by using dose analysis program. In the dose distributions of wedge field, the dose from a physical wedge was higher than that from a dynamic wedge at the same electron density materials. A dose distributions of wedge type in the solid water phantom and the cork phantom were in agreements with 2%. However, the dose distribution in air cavity showed the large difference with those in the solid water phantom or cork phantom dose distributions. Dose distribution of wedge field in air cavity was not shown the wedge effect. The penumbra width, out of the field of thick and thin, was observed larger from 1 cm to 2 cm at the thick end. The penumbra of physical wedge filter was much larger average 6% than the dynamic wedge filter. If the physical wedge filter is used, the dose was increased to effect the scatter that interacted with photon and physical wedge. In the case of difference in electron like the soft tissue, lung, and air, the transmission, absorption, and scattering were changed in the medium at high energy photon. Therefore, the treatment at the difference electron density should be inhomogeneity correction in treatment planning system.

Deconvolution of Detector Size Effect Using Monte Carlo Simulation (몬데카를로 시뮬레이션을 이용한 검출기의 크기효과 제거)

  • Park, Kwangyl;Yi, Byong-Yong;Young W. Vahc
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2004
  • The detector size effect due to the spatial response of detectors is a critical source of inaccuracy in clinical dosimetry that has been the subject of numerous studies. Conventionally, the detector response kernel contains all the information about the influence that the detector size has on the measured beam profile. Various analytical models for this kernel have been proposed and studied in theoretical and experimental works. Herein, a method to simply determine the detector response kernel using the Monte Carlo simulation and convolution theory has been proposed. Based on this numerical method, the detector response kernel for a Farmer type ion chamber embedded in a water phantom has been obtained. The obtained kernel shows characteristics of both the pre-existing parabolic model proposed by Sibata et al. and the Gaussian model used by Garcia-Vicente et al. From this kernel and deconvolution technique, the detector size effect can be removed from measurements for 6MV, 10${\times}$10 $\textrm{cm}^2$ and 0.5${\times}$10 $\textrm{cm}^2$photon beams. The deconvolved beam profiles are in good agreements with the measurements performed by the film and pin-point ion chamber, with the exception of in the tail legion.

  • PDF

Study on Dosimetric Properties of Radiophotoluminescent Glass Rod Detector (유리선량계의 선량 특성에 관한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Hong, Ju-Young;Kim, Hee-Sun;Lim, Chun-Il;Jeong, Hee-Gyo;Suh, Tea-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • A radiophotoluminescent glass rod detector (GRD) system has recently become commercially available. We investigate the dosimetric properties of the GRD regarding the reproducibility of signal, dose linearity and energy dependence. The reproducibility of five measurements for 50 GRDs is presented by an average of one standard deviation of each GRD and it is ${\pm}1.2%$. It is found to be linear in response to doses of $^{60}Co$ beam in the range 0.5 to 50 Gy with a coefficient of linearity of 0.9998. The energy dependence of the GRD is determined by comparing the dose obtained using cylindrical chamber to that by using the GRD. The GRD response for each beam is normalized to the response for a $^{60}Co$ beam. The responses for 6 and 15 MV x-ray beams are within ${\pm}1.5%$ (1SD). The energy response of GRD for high-energy photon is almost the same as the energy dependence of LiF:Mg:Ti (TLD-100)and shows little energy dependence unlike p-type silicon diode detector. The GRDs have advantages over other detectors such diode detector, and TLD: linearity, reproducibility and energy dependency. It has been verified to be an effective device for small field dosimetry for stereotactic radiosurgery.

Dosimetric Characteristics of the KCCH Neutron Therapy Facility (원자력병원 중성자선치료기의 물리적특성)

  • Yoo Seong Yul;Noh Sung Woo;Chung Hyun Woo;Cho Chul Koo;Koh Kyoung Hwan;Bak Joo Shik;Eenmaa Juri
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.85-91
    • /
    • 1988
  • For the physical characterization of neutron beam, dosimetric measurements had been performed to obtain physical data of KCCH cyclotron-produced neutrons for clinical use. The results are presented and compared with the data of other institutions from the literatures. The central axis percent depth dose, build-up curves and open and wedge isodose curve values are intermediate between that of a 4 and 6 MV X-rays. The build-up level of maximum dose was at 1.35cm and entrance dose was approximately $40\%$. Flatness of the beam was $9\%$ at Dmax and less $than{\pm}3\%$ at the depth of $80\%$ isodose line. Penumbra begond the $20\%$ line is wider than corresponding photon beam. The output factors ranged 0.894 for $6\times6cm$ field to 1.187 for $30\times30cm$ field. Gamma contamination of neutron beam was $4.9\%$ at 2 cm depth in $10\times10cm$ field.

  • PDF

Thermoluminescent Response of Thin LiF:Mg,Cu,Na,Si Detectors to Beta Radiation (얇은 LiF:Mg,Cu,Na,Si 검출기의 베타선장에 대한 TL 반응)

  • Nam, Y.M.;Kim, J.L.;Chang, S.Y.;Cho, H.W.;Kim, H.J.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.39-43
    • /
    • 1999
  • Thermoluminescent (TL) response characteristics of a thin LiF:Mg,Cu,Na,Si Teflon detectors have been studied for use in beta radiation detection. The detectors were fabricated from a mixture of LiF:Mg,Cu,Na,Si phosphor and Teflon powder which was molded into a thin disk form of $50mg/cm^2$ thickness. These detectors were irradiated to beta fields of $^{147}Pm,\;^{204}Tl\;and\;^{90}Sr/^{90}Y$ sources with a covering of Kapton foil ($2mg/cm^2$) and photon irradiation was carried out with a $^{137}Cs$ source at the Korea Atomic Energy Research Institute (KAERI). Batch uniformity was estimated to be 4.7% and the beta dose response presented linear relationship from 0.1 mGy to 100 Gy. The beta energy responses of thin detectors normalized to $^{137}Cs$ were presented as 0.46, 1.09 and 1.06 for $^{147}Pm,\;^{204}Tl\;and\;^{90}Sr/^{90}Y$ beta rays, respectively. The evaluated values for angular responses were $0.93{\pm}0.03\;(^{147}Pm),\;0.94{\pm}0.04\;(^{204}Tl),\;and\;0.92{\pm}0.05\;(^{90}Sr/^{90}Y)$. The results satisfied well a proposed ISO Standard for beta ray dosimeters.

  • PDF

The Dosimetric Effects on Scallop Penumbra from Multi-leaf Collimator by Daily Patient Setup Error in Radiation Therapy with Photon (광자선 치료시 Setup 오차에 따르는 Multi-leaf Collimator의 Scallop Penumbra 변화 효과)

  • Yi, Byong-Yong;Cho, Young-Kap;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 1996
  • Purpose : To evaluate the clinical implications of scallop penumbra width that comes from multileaf collimator(MLC) effect by the daily routine patient setup error. Materials and Methods : The anales of $0^{circ},{\;}15^{circ},{\;}30^{circ},{\;}45^{circ},{\;}60^{circ},{\;}and{\;}75^{circ}$ inclined -radiation blocked fields were generated using the both conventional cerrobend block and the MLC. Film dosimetry in the phantom were performed to measure penumbral widths of differences between the dose distributions from the cerrobend block and those of respect the MLC. The patient setup error effect on scallop penumbra was simulated with respect to the table of setup error distribution. Same procedures are repeated for the cerrobend block generated field. Results : There are penumbral widths of to 3mm difference between the dose distributioins from two kinds of field shaping tools, the conventional block and the MLC with 4mm setup error model and resolution of 1cm leaf at the isocenter. Conclusion : We need not additive margin for MLC, if planning target volume is selected according to the recommendation of ICRU 50. For particular cases, we can include the target volume with less than 3mm additive margin.

  • PDF