• Title/Summary/Keyword: Photon density

Search Result 225, Processing Time 0.03 seconds

Clinical Application of Bone Mineral Density Measurement (골밀도 측정의 올바른 임상 적용)

  • Kim, Deog-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.275-281
    • /
    • 2004
  • Compared with the earlier technique of dual photon absorptiometry (DPA) using $^{153}Gd$ radionuclide source, dual energy X-ray absorptiometry (DXA) has advantages of higher precision, accuracy and shorter scanning time. Despite the change from DPA to DPX, the nuclear medicine physicians has remained one of major suplier of this service due to long-standing use of DPA. Among many kinds of bone densitometries, DXA is the "gold standard" for the noninvasive diagnosis of osteoporosis. Especially there is no role for peripheral devices in the monitoring of patients on therapy. But, there are some areas of controversy related to the application of DXA, such as proper site of measurement, accurate interpritation, appropriate use of T-score, and the reference population young database. And the accuracy, precision, and quality control issues relating to bone density measurement are important subjects. To address these issues, the International Society for Clinical Densitometry (ISCD) has convened two Position Development Conferences and addressed official positions. This review deals the key elements of ISCD position paper and other important issues on the management of bone densitometry.

Effects of Physical Factors on Computed Tomography Image Quality

  • Jeon, Min-Cheol;Han, Man-Seok;Jang, Jae-Uk;Kim, Dong-Young
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.227-233
    • /
    • 2017
  • The purpose of this study was to evaluate the effects of X-ray photon energy, tissue density, and the kernel essential for image reconstruction on the image quality by measuring HU and noise. Images were obtained by scanning the RMI density phantom within the CT device, and HU and noise were measured as follows: images were obtained by varying the tube voltages, the tube currents and eight different kernels. The greater the voltage-dependent change in the HU value but the noise was decreased. At all densities, changes in the tube current did not exert any significant influence on the HU value, whereas the noise value gradually decreased as the tube current increased. At all densities, changes in the kernel did not exert any significant influence on the HU value. The noise value gradually increased in the lower kernel range, but rapidly increased in the higher kernel range. HU is influenced by voltage and density, and noise is influenced by voltage, current, kernel, and density. This affects contrast resolution and spatial resolution.

Growth Model of Leaf Lettuce Based on the Cumulative Photosynthetic Photon Flux Density (적산일사량에 따른 상추 생육모델)

  • 문보흠;이병일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • 채소는 다른 작물에 비해 생육기간이 매우 짧기 때문에 환경의 영향을 많이 받는다. 특히 환경이 제어되는 시설에서 양액재배를 할 경우에는 생육이 왕성하므로 노지에 비해 재배기간을 단축시킬 수 있으며, 근권부 양액제어나 지상부 환경제어를 통해 고품질 채소를 생산할 수 있는 장점이 있다. 따라서 빠른 생육을 제어하거나 예측할 수 없어 수확적기를 놓치면 외관적 품질이 현저히 떨어지고 질적 품질도 저하하여 소비자의 기호에 맞추기 힘들게 된다. (중략)

  • PDF

A Study on the Influence of the Dietary Intake upon Bone Mineral Density in Korean Aged (한국 노인의 식사내용이 골격밀도에 미치는 영향에 관한 조사연구)

  • 한성숙
    • Journal of Nutrition and Health
    • /
    • v.21 no.5
    • /
    • pp.333-347
    • /
    • 1988
  • The purpose of the present study was to investigate the relationship between nutrient status, and bone mineral state which influenced by aging process. The subjects were 196 people over 65 years old(male 72, female124). The present dietary intake was estimated by the 24-hr, recall method, and individual dietary history concerning consumption of meat, fish and dairy products was obtained by questionaires. The syndrome of senility including seniliy was evaluated according to "Cornell Medical Index". The five subjects who showed 'Good' grade in bone senility, and five subjects who showed 'Risk' and 'Danger' grade were selected and their spine and femur bone density was measured by "Dual Photon Absorptiometry". The bone density measurement showed that the subjects with 'Good' grade in bone senility had bone density above that of normal person, and their nutrient status were satisfactory, whereas the subjects with 'Risk' and 'Danger' grade in bone senility had severe osteoporotic pattern, and their nutrient status were very poor. The food consumption score showed that the subject with higher intake of meat rather than milk had good grade in bone senility (p<0.05). Therefore, past meats consumption can be considered to be a significant factor in the present bone status. The nutrient intakes appeared to be significant factors in bone status in male, whereas there was little effect of nutrients intakes in female. Therefore, the risk of osteoporosis can increase as syndrome of bone senility and nutrient intakes were worse, and its is possible to evaluate bone status and predict osteoporosis simply from informations concerning syndrome of bone senility and nutrient intakes in old population over 65.

  • PDF

High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications

  • Lee, Joon-Hoi;Lee, Wook-Jae;Choi, Man-Sub;Yi, Joon-Sin
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • This paper investigates the characteristics of a newly developed high density hollow cathode plasma(HCP) system and its application for the etching of silicon wafers. We used $SF_6$ and $O_2$ gases in the HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}cm^{-3}$ at a discharge current of 20 rna, Silicon etch rate of 1.3 ${\mu}m$/min was achieved with $SF_6/O_2$ plasma conditions of total gas pressure of 50 mTorr, gas flow rate of 40 seem, and RF power of200W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. We obtained field emitter tips size of less than 0.1 ${\mu}m$ without any photomask step as well as with a conventional photolithography. Our experimental results can be applied to various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this research, we studied silicon etching properties by using the hollow cathode plasma system.

  • PDF

The Effects of the CT Voltages on the Dose Calculated by a Commercial RTP System (CT 관전압이 상용 전산화치료계획장치의 선량계산에 미치는 영향)

  • 강세권;조병철;박희철;배훈식
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • The relationship between the dose calculated with a radiotherapy treatment planning system (RTPS) and CT number verses the relative electron density curve was investigated for various CT voltages and beam qualifies. We obtained the relationship between the CT numbers and electron densities of the tissue equivalent materials for various CT voltages and beam qualifies. At lower CT voltages, the higher density materials, like cortical bone, showed larger CT numbers and the soft tissues showed no variations. We peformed a phantom study in a RTPS, where a phantom consisted of lung and bone legions in water. We calculated the dose received behind the lung and bone regions for 6 MV photon beams, in which the regions below the lung, water and bone received higher doses in this listed order. The result was the same for 10 MV photon beams. For the clinical application, the doses were calculated for the lung and pelvis. No difference was observed when using different electron density conversion tables with various CT voltages from a same CT. A relative dose difference of 1.5% was obtained when the CT machine for the density conversion table was different from that for the CT image for planning.

  • PDF

Gamma radiation attenuation properties of tellurite glasses: A comparative study

  • Al-Hadeethi, Y.;Sayyed, M.I.;Tijani, S.A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2005-2012
    • /
    • 2019
  • This work investigated the radiation attenuation characteristics of three series of tellurite glass systems with the following compositions: 30PbO-10ZnO-xTeO2-(60-x)B2O3 where x = 10, 30, 40, 50 and 60 mol%, xBaO-xB2O3-(100-2x)TeO2 with x = 15-40 mol% and 50ZnO-(50-x)P2O5-xTeO2, where x = 0, 10, .40 mol%. The results revealed that the attenuation parameters in all the samples decrease with increase in the energy, which implied that all the samples have better interaction with gamma photons at low energies and thus higher photon attenuating efficiency. From the three systems, the samples coded as PbZnBTe60, BaBTe70 and ZnPTe40 have the lowest half value layer values and accordingly have superior photon attenuation efficacy. The maximum effective atomic number values were found for energy less than 0.1 MeV particularly near the K-edges absorption of the heavy atomic number elements such as Te, Ba and Pb. At the lowest energy, the Zeff values are found in the range of 62.33-66.25, 49.43-50.81 and 24.99-35.83 for series 1-3 respectively. Also, we found that the density of the glass remarkably affects the photon attenuation ability of the selected glasses. The mean free path results showed that the PbO-ZnO-TeO2-B2O3 glass system has better radiation shielding efficiency than the glass samples in series 2 and 3.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.

Effects of Light Intensity and Nutrient Level on Growth and Quality of Leaf Lettuce in a Plant Factory (식물공장내 광도와 배양액농도가 상추의 생육과 품질에 미치는 영향)

  • Park, Mi-Hee;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 1999
  • This study was conducted to investigate the optimum environment for leaf lettuce (Lactuca sativa L. var. crispa) in a plant factory to increase mass-production efficiency of quality leaf lettuce. Transpiration rate and $CO_2$ assimilation rate were increased with increasing the photosynthetic photon flux density (PPFD). The highest fresh weight and dry weight were observed at the PPFD of 200 and 300 U moi $m^{-2}$ $s^{-l}$, respectively. The optimum aerial environment for the growth and quality of leaf lettuce in the plant factory was determined to be over 200 $\mu$mol $m^{-2}$ $s^{-1}$ for PPFB. Although the interaction between light intensity and nutrient level was not significant, the lettuce growth was the best under electrical conductivity (EC) of 1.8 mS $cm^{-1}$ / at high light intensity (250 $\mu$mol $m^{-2}$ $s^{-1}$ ) and EC of 2.4 mS cm-1 at low light level (150 $\mu$mol $m^{-2}$ $s^{-1}$ ) respectively.y.

  • PDF