• Title/Summary/Keyword: Photon density

Search Result 225, Processing Time 0.03 seconds

Center of Photon Mass as a Unified Design Parameter II : Quarter Wavelength Shifted DFB Lasers (DFB 레이저의 통합된 설계 변수로서의 광자 분포 중심 II : ${\lambda}$/4 위상 천이 구조)

  • Kim, Sung-Han;Kim, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.63-69
    • /
    • 1999
  • Center of photon mass, defined as the center of axial photon distribution in each half, is proposed as a unified design parameter in quarter wavelength shifted(QWS) DFB lasers. Shown is the way the parameter is related to the threshold pain difference and uniformity in axial photon density, which determine single-frequency stability of DFB lasers. Also, a general rule for single-frequency DFB laser design is presented. Using the design rule, we propose a sampled grating QWS-DFB laser that has a wider $_KL$ range 0f 100% single-frequency yield.

  • PDF

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H.;Marashdeh, M.W.;AlAqeel, M.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.701-708
    • /
    • 2022
  • The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

Fabrication and characterization of NbTi-Au-NbTi Josephson junctions

  • Pyeong Kang, Kim;Heechan, Bang;Bongkeon, Kim;Yong-Joo, Doh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.6-10
    • /
    • 2022
  • We report on the fabrication and measurements of metallic Josephson junctions (JJs) consisting of Au nanoribbon and NbTi superconducting electrodes. The maximum supercurrent density in the junction reaches up to ~ 3×105 A/cm2 at 2.5 K, much larger than that of JJ using single-crystalline Au nanowire. Temperature dependence of the critical current exhibits an exponential decay behavior with increasing temperature, which is consistent with a long and diffusive junction limit. Under the application of a magnetic field, monotonous decrease of the critical current was observed due to a narrow width of the Au nanoribbon. Our observatons suggest that NbTi/Au/NbTi JJ would be a useful platform to develop an integrated superconducing quantum circuit combined with the superconducting coplanar waveguide and ferromagnetic π junctions.

Optimization of Energy Modulation Filter for Dual Energy CBCT Using Geant4 Monte-Carlo Simulation

  • Ju, Eun Bin;Ahn, So Hyun;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.125-130
    • /
    • 2016
  • Dual energy computed tomography (DECT) is used to classify two materials and quantify the mass density of each material in the human body. An energy modulation filter based DECT could acquire two images, which are generated by the low- and high-energy photon spectra, in one scan, with one tube and detector. In the case of DECT using the energy modulation filter, the filter should perform the optimization process for the type of materials and thicknesses for generating two photon spectra. In this study, Geant4 Monte-Carlo simulation toolkit was used to execute the optimization process for determining the property of the energy modulation filter. In the process, various materials used for the energy modulation filter are copper (Cu, $8.96g/cm^3$), niobium (Nb, $8.57g/cm^3$), stannum (Sn, $7.31g/cm^3$), gold (Au, $19.32g/cm^3$), and lead (Pb, $11.34g/cm^3$). The thickness of the modulation filter varied from 0.1 mm to 1.0 mm. To evaluate the overlap region of the low- and high-energy spectrum, Geant4 Monte-Carlo simulation is used. The variation of the photon flux and the mean energy of photon spectrum that passes through the energy modulation filter are evaluated. In the primary photon spectrum of 80 kVp, the optimal modulation filter is a 0.1 mm lead filter that can acquire the same mean energy of 140 kVp photon spectrum. The lead filter of 0.1 mm based dual energy CBCT is required to increase the tube current 4.37 times than the original tube current owing to the 77.1% attenuation in the filter.

Travelling wave model analysis of absorptive bistable laser diode (쌍안정 레이저 다이오드의 진행파형 모델 해석)

  • 서재원;박동욱
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.276.1-277
    • /
    • 2000
  • Absorptive bistable laser diode was analyzed by using traveling wave model in conjunction with the finite-difference method. Carrier and photon density distributions were calculated and the output characteristics were obtained. The results for both the steady-state and transient (switching) cases were compared with those of the rate equation approach.

  • PDF

Dust Scattering in Turbulent Media: Correlation between the Scattered Light and Dust Column Density

  • Seon, Kwang-Il;Witt, Adolf N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2014
  • Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.

  • PDF

Influence of Light on Biomass of Soybean in Narrow Strip Cropping of Oat, Corn, and Soybean

  • Van, Kyujung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.368-373
    • /
    • 2002
  • The strip intercropping system has used due to many advantages. Many researches supported these crop systems are usually equal to or better than monoculture crop systems in both total production and profit. There was no research to examine the important ecological factors in the competition between crops. A strip intercropping system composed of adjacent narrow strips of corn, soybean, and oat/legumes has been investigated in Iowa, USA. This study conducted to investigate why and how the differences in soybean yield are produced and affected by light, one of the microclimate, of the strip intercropping system. In height, the two rows of soybean closest to corn were taller than the two rows near the then-empty oat strip. The height of each crop decreased as the amount of light received increased. Weight of plant parts was lowest in row 1, nearest corn, and highest in row 4, next to the vacant oat strip. Daily photon flux density(PFD) increased with increasing distance from corn, with the highest value occurring on the edge next to the empty oat strip. Analyses of the relationship between light and biomass of soybean showed that all biomass measurements had a positive relationship to total PFD per day except height.

Acclimation of maximum quantum yield of PSII and photosynthetic pigments of Panax quinquefolius L. to understory light

  • Fournier, Anick R.;T.A., John;Khanizadeh, Shahrokh;Gosselin, Andre;Dorais, Martine
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.347-356
    • /
    • 2008
  • Forest-grown American ginseng (Panax quinquefolius L.) is exposed to daily and seasonal light variations. Our goal was to determine the effect of understory light changes on the maximum quantum yield of photosystem II, expressed as $F_v/F_m$, and photosynthetic pigment composition of two-year-old plants. Understory light photon flux density and sunfleck durations were characterized using hemispherical canopy photography. Our results showed that understory light significantly affected the $F_v/F_m$ of American ginseng, especially during the initial development of the plants when light levels were the highest, averaging 28 mol $m^{-2}d^{-1}$. Associated with low $F_v/F_m$ during its initial development, American ginseng had the lowest levels of epoxidation state of the xanthophyll cycle of the season, suggesting an active dissipation of excess light energy absorbed by the chlorophyll pigments. As photon flux density decreased after the deployment of the forest canopy to less than 10 mol $m^{-2}d^{-1}$, chlorophyll a/b decreased suggesting a greater investment in light harvesting pigments to reaction centers in order to absorb the fleeting light energy.