• Title/Summary/Keyword: Photon counting system

Search Result 33, Processing Time 0.031 seconds

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Extraction of Distance Information with Nonlinear Correlation of Photon-Counting Integral Imaging

  • Yeom, Seokwon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.579-585
    • /
    • 2016
  • Integral imaging combined with photon-counting detection has been researched for three-dimensional information sensing under low-light-level conditions. This paper addresses the extraction of distance information with photon-counting integral imaging. The longitudinal distance to the object is obtained utilizing photon-counting elemental images. The pixel disparity is estimated by maximizing the nonlinear correlation of photocounts. The first- and second-order statistical properties of the nonlinear correlation are theoretically derived. In the experiments, these properties are verified by varying the mean number of photocounts in the scene. The average distance is compared to that from the intensity information, showing the robustness of the proposed system even at low photocounts.

Fluorescence photon counting rate as a function of dye concentration: Effect of dead time of photon detector (색소 농도에 따른 형광 광자의 계수율 : 광자 검출기의 dead time 효과)

  • 고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.353-355
    • /
    • 1997
  • A single molecule detection system, which consists of confocal fluorescence microscope and single photon counter, has been used to observe the dye concentration dependence of photon counting rate. With increasing concentration, a saturation effect of counting is observed and demonstrated on the basis of the dead time of photon detector. The equations presented here show the relations between the counting rate and some parameters such as probe volume, quantum efficiency of detector, and fluorescence photon number entered onto detector. The signal-to-noise ratio is also discussed briefly.

  • PDF

Numerical Reconstruction and Pattern Recognition using Integral Imaging

  • Yeom, Seo-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1131-1134
    • /
    • 2008
  • In this invited paper, numerical reconstruction and pattern recognition using integral imaging are overviewed. The computational integral imaging method reconstructs three-dimensional information at arbitrary depth-levels. Photon-counting nonlinear matched filtering combined with the computational reconstruction provides promising results for the application of low-light level recognition.

  • PDF

Three-Dimensional Visualization and Recognition of Micro-objects using Photon Counting Integral Imaging Microscopy (광자 계수 집적 영상 현미경을 사용한 마이크로 물체의 3차원 시각화와 인식)

  • Cho, Myungjin;Cho, Giok;Shin, Donghak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1207-1212
    • /
    • 2015
  • In this paper, we propose three-dimensional (3D) visualization and recognition techniques of micro-objects under photon-starved conditions using photon counting integral imaging microscopy. To capture high resolution 2D images with different perspectives in the proposed method, we use Synthetic Aperture Integral Imaging (SAII). Poisson distribution which is mathematical model of photon counting imaging system is used to extract photons from the images. To estimate 3D images with 2D photon counting images, the statistical estimation is used. Therefore, 3D images can be obtained and visualized without any damage under photon-starved conditions. In addition, 3D object recognition can be implemented using nonlinear correlation filters. To prove the usefulness of our technique, we implemented the optical experiment.

Development and Characterization of a Dosimeter Using Tissue-Equivalent Scintillator by Photon-Counting Method (조직 등가 섬광체를 이용한 계수형 선량계의 개발과 특성 평가)

  • Cheon, Jong-Kyu;Kim, Sung-Hwan;Kim, Hong-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • A dosimeter using tissue-equivalent scintillator by photon-counting method was developed and evaluated in its performance. The dosimeter is portable and can be operated by low power from lap-top computer. A data-acquisition software of the dosimeter system was developed by Labwindows/CVI based on Windows. The energy to channel ratio for energy calibration was 0.839 keV/ch. obtained from pulse height spectrum of $^{137}Cs$ and $^{60}Co$ gamma-ray. Using the dosimeter system, the absorbed dose of environmental radiation in Gyungju was 0.18 ${\mu}Sv/h$.

Monte-carlo Simulation for X-ray Photon Counting using MPPC Arrays (배열형 실리콘광증배소자를 이용한 포톤 카운팅 검출기 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.929-934
    • /
    • 2018
  • Studies for counting and detecting X-rays for the improvement of image quality and material analysis are active. In this work, the detector for X-ray photon counting was designed using Multi-pixel photon counter (MPPC) array and the detector characteristics were evaluated through simulation. Geant4 Application for Tomographic Emission (GATE) was used to obtain the position where the X-ray and the scintillation interacted, and this position was used as the light generation position of DETECT2000. 0.5 mm and 1 mm thick Gadolinium Aluminium Gallium Garnet (GAGG) scintillators were used and the light generated through a $4{\times}4$ array of MPPCs was acquired. The spatial resolution of the designed detector was evaluated by reconstructed image using the light signal acquired for each channel. We obtained images of more than 2 lp/mm in both 0.5 mm and 1 mm thick GAGG scintillation. When this detector is used in a X-ray system, a low-cost system capable of photon counting can be made.

Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System (광 계수 방식의 라만 라이다 시스템을 이용한 원격 수소 가스 농도 계측 방법에 대한 연구)

  • Choi, In Young;Baik, Sung Hoon;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.114-119
    • /
    • 2019
  • This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas by using a photon counter. The Raman signal of the hydrogen gas is very weak and has a very low signal-to-noise ratio. The photon counter has the advantage of improving the signal-to-noise ratio, because it has a discriminator to eliminate the background noise from the Raman signal of the hydrogen gas. Therefore, a small and portable Raman lidar system was developed using a low-power pulsed laser and a photon-counter system to measure the hydrogen gas concentration remotely. To verify the capability of measuring hydrogen gas using the developed photon-counting Raman lidar system, experiments were carried out using a gas chamber in which it is possible to adjust the hydrogen gas concentration. As a result, our photon-counting Raman lidar system is seen to measure a minimum concentration of 0.65 vol.% hydrogen gas at a distance of 10 m.

Lifetime and Anisotropy Measurements of DODCI in the excited state by TCSPC (TCSPC에 의한 DODCI의 형광 소멸시간 및 비등방성 측정 연구)

  • 이민영;김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.52-57
    • /
    • 1990
  • Employing a picosecond laser and fast electronics. we developed a time -correlated single photon counting (TCSPC) system by which ltuninescence lifetimes can be measured in the subnanosecond to microsecond scale. We also studied non-radiative decay dynamics and rotational motion of DODC! laser dye in solution using this system. ystem.

  • PDF

Operating Characteristics of a Time-Correlated Single Photon Counting System and its Application to Fluorescence Life Time Measurements (시간 상관 단일 광자 계수기의 동작 특성과 형광 수명 시간 측정에의 응용)

  • Ko, D.S.;Jung, H.S.;Kim, U.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.512-514
    • /
    • 1989
  • A time-correlated single photon counting system combined with a mode locked $Ar^+$ laser has been utilized to measure the fluorescence decay. A side-on type photomultiplier tube has been used as a photon detector. By restricting the sensitive area and the position of the photocathode, the transit time differencies of photoelectrons in PMT has been reduced. The fluorescence life time of rhodamin 6G in ethylene glycol measured 3.9$\pm$10 ns.

  • PDF