• Title/Summary/Keyword: Photon Model

Search Result 162, Processing Time 0.018 seconds

Evaluation on the radiation exposure from activated wedge filter (10MV 이상 고에너지 사용시 wedge filler의 방사화가 작업환경에 미치는 영향평가)

  • Lee HwaJung;Kim DaeYoung;Kim WonTaek;Lee KangHyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • In the process of photon treatments, linear accelerators with energies higher than 10 MV produce neutrons through the (${\gamma}$, n) interactions with the composite materials of the linac head md these materials further produce the induced radiations. We investigate the possible risks from these induced radiations especially in the wedge filters to the radiation workers. Wedge filters are used to modify the isodose profiles in the radiation treatment using the linear accelerator and always be handled by the radiation workers. For the background radiation, we measured the radiation in both the waiting room and the outside of the building for two hospitals, S and H. The results of S hospital were $0.11\;{\mu}Sv/hr$ and $0.10\;{\mu}Sv/hr$ for waiting room and outside respectively, and in the case of H hospital, they were $0.12\;{\mu}Sv/hr$ and $0.11\;{\mu}Sv/hr$. Using a survey meter, we measured the radiation from wedge filters inserted in 10 MV and 15 MV Siemens linear accelerators. The time series measurements were done in ${\sim}1$ minutes after exposure of 5 Gy of monitor units for the field size of $25{\times}25cm^2$. The starting value of 10 MV machine was about $3.26\;{\mu}Sv/hr$, which was three times higher than that of 10 MV. The measured radiation was from $^{28}Al$ and $^{53}Fe$ with a half life of 3.5 min. If the treatment patients are $20{\sim}50$ per day and the number of process of wedge filter change per patient is one or two, the annual dose equivalent is $0.08{\sim}0.4\;mSv$ for 10 MV, and $0.27{\sim}1.36\;mSv$ for 15 MV, which are in the range of dose equivalent limits of radiation workers.

  • PDF

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.