• Title/Summary/Keyword: Photomask

Search Result 57, Processing Time 0.016 seconds

Shape Error and Its Compensation in the Fabrication of Microlens Array Using Photoresist Thermal Reflow Method (Photoresist thermal reflow 방법을 이용하여 제작한 마이크로렌즈 어레이의 형상 관련 오차 및 이에 대한 보정)

  • Kim, Sin Hyeong;Hong, Seok Kwan;Lee, Kang Hee;Cho, Young Hak
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.23-28
    • /
    • 2013
  • Microlens array as basic element of the optical system have been fabricated with various focal length (mainly with long focal length) depending on the purpose of application. In this paper, the microlens arrays were fabricated for observing fluorescent images within sol-gel. Though the fluorescent signal is very low, the microlens array can help obtaining clear images through extracting the fluorescent light from sol-gel. We fabricated microlens arrays with short focal length, which can extract the light using photoresist thermal reflow method. In the experiment, the diameter of microlens decreased after thermal reflow because the solvent within the photoresist was vaporized. Therefore, to compensate the shape error by this reduction, microlens diameter in photomask was altered and spin-coat recipe of photoresist were modified.

A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape (광경화 점착 테이프를 이용한 은 나노와이어 기반 투명전극 패터닝 공법)

  • Ju, Yun Hee;Shin, Yoo Bin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.73-76
    • /
    • 2020
  • Silver nanowires (AgNWs) intrinsically possess high conductivity, ductility, and network structure percolated in a low density, which have led to many advanced applications of transparent and flexible electronics. Most of these applications require patterning of AgNWs, for which photolithographic and printing-based techniques have been widely used. However, several drawbacks such as high cost and complexity of the process disturb its practical application with patterning AgNWs. Herein, we propose a novel method for the patterning of AgNWs by employing UV-curable adhesive tape with a structure of liner/adhesive layer/polyolefin (PO) film and UV irradiation to simplify the process. First, the UV-curable adhesive tape was attached to AgNWs/polyurethane (PU), and then selectively exposed to UV irradiation by using a photomask. Subsequently, the UV-curable adhesive tape was peeled off and consequently AgNWs were patterned on PU substrate. This facile method is expected to be applicable to the fabrication of a variety of low-cost, shape-deformable transparent and wearable devices.

Highly Flexible Touch Screen Panel Fabricated with Silver Nanowire Crossing Electrodes and Transparent Bridges

  • Jeon, Youngeun;Jin, Han Byul;Jung, Sungchul;Go, Heungseok;Lee, Innam;Lee, Choonhyop;Joo, Young Kuil;Park, Kibog
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • A capacitive-type touch screen panel (TSP) composed of silver nanowire (AgNW) crossing electrodes and transparent bridge structures was fabricated on a polycarbonate film. The transparent bridge structure was formed with a stack of Al-doped ZnO (AZO) electrodes and SU-8 insulator. The stable and robust continuity of the bridge electrode over the bridge insulator was achieved by making the side-wall slope of the bridge insulator low and depositing the conformal AZO film with atomic layer deposition. With an extended exposure time of photolithography, the lower part of the SU-8 layer around the region uncovered by the photomask can be exposed enough to the UV light scattered from the substrate. This leads to the low side-wall slope of the bridge insulator. The fabricated TSP sample showed a large capacitance change of 22.71% between with and without touching. Our work supplies the technological clue for ensuring long-term reliability to the highly flexible and transparent TSP made by using conventional fabrication processes.

Imaging on a Vapor Deposited Film by Photopolymerization of a Rod-Like Molecule Consisting of Two Diacetylenic Groups

  • Chang, Ji-Young;Kyung Seo;Cho, Hyun-Ju;Lee, Cheol-Ju;Lee, Changjin;Yongku Kang;Kim, Jaehyung
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.204-208
    • /
    • 2002
  • A linear rod-like molecule, bis[4-(1,3-octadynyl)phenyl] terephthalate (2), consisting of two diacetylenic groups, was prepared. The unsymmetric diacetylene was prepared by the Cadiot-Chodkiewicz coupling reaction of 1-bromohexyne with 4-ethynylphenol and linked to a benzene core by an esterification reaction with terephthaloyl chloride in tetrahydrofuran. The thin film (200 nm thickness) of compound 2 was fabricated by the physical vapor deposition on a glass plate with a thermal evaporator. In the X-ray diffraction (XRD) study, the vapor deposited film on the glass plate showed peaks with d spacings of 19.4, 5.7, and 4.5 $\AA$. This XRD pattern was quite different from that observed for compound 2 isolated by recrystallization from methylene chloride/hexane. The vapor deposited film was polymerized by UV irradiation. Photopolymerization was carried out through a photomask, resulting in a patterned image, where the irradiated part became isotropic.

Fabrication of an ultra-fine ginsenoside particle atomizer for drug delivery through respiratory tract (호흡기를 통한 약액 전달을 위한 진세노사이드 초미세입자 분무장치 제작)

  • Byung Chul Lee;Jin Soo Park;Woong Mo Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Objectives: The purpose of this study is to fabricate an ultra-fine ginsenoside particle atomizer that can provide a new treatment method by delivering ginsenoside components that have a therapeutic effect on respiratory diseases directly to the lungs. Methods: We fabricated the AAO vibrating mesh by using the micromachining process. The starting substrate of an AAO wafer has a 350nm pore diameter with 50㎛ thickness. A photomask having several 5㎛ opening holes with a 100㎛ pitch was used to separate each nanopore nozzle. The photoresist structure was optimized to pattern the nozzle area during the lift-off process precisely. The commercial vibrating mesh was removed from OMRON's NE-U100 product, and the fabricated AAO vibrating mesh was installed. A diluted sample of 20mL with 30% red ginseng concentrate was prepared to atomize from the device. Results: As a result of liquid chromatography analysis before spraying the ginsenoside solution, ginsenoside components such as 20S-Rg3, 20R-Rg3, and Rg5 were detected. After spraying through the AAO vibrating mesh, ginsenosides of the same component could be detected. Conclusion: A nutrient solution containing ginsenosides was successfully sprayed through the AAO vibrating mesh with 350 nm selective pores. In particular, during the atomizing experiment of ginsenoside drug solution having excellent efficacy in respiratory diseases, it was confirmed that atomizing through the AAO vibrating mesh while maintaining most of the active ingredients was carried out.

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.