• Title/Summary/Keyword: Photoluminescence spectroscopy

Search Result 272, Processing Time 0.027 seconds

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • Zeferino, Raul Sanchez;Pal, Umapada;Reues, Ma Eunice De Anda;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa;Lee, Hee Ae;Park, Cheol Woo;Kang, Hyo Sang;Lee, Joo Hyung;In, Jun-Hyeong;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.439-443
    • /
    • 2018
  • The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique (Indium Interruption Growth법으로 성장한 InAs 양자점의 광학적 특성)

  • Lee, Hi-Jong;Ryu, Mee-Yi;Kim, Jin-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.474-480
    • /
    • 2009
  • We have investigated optical properties of InAs quantum dots (QDs) grown on GaAs (100) substrate by molecular beam epitaxy, by means of photoluminescence (PL) and time-resolved PL spectroscopy. InAs QDs were grown by using In interruption growth technique, in which the In flux was periodically interrupted by a closed In shutter during InAs QDs growth. The shutter of In source was opened for 1 s and then closed for 0, 9, 19, 29, or 39 s. This growth sequence was repeated 30 times during QDs growth. For each sample, the total amount of In contributing to the growth was the same (30 s) but total growth time was varied during the InAs growth. As the In interruption time is increased from 0 to 19 s, the PL peak position of the QDs is red-shifted from 1096 to 1198 nm, and the PL intensity is increased. However, the PL peak is unchanged and the intensity is decreased as the In interruption time is increased further to 39 s. The PL decay times measured at the PL peak position for all the InAs QDs are independent on the QD growth conditions and showed about 1 ns. The red-shift of PL peak and the increase of PL intensity can be explained due to increased QD size and the enhancement in the migration of In atoms using In interruption technique. These results indicated that the size and shape of InAs QDs can be controlled by using In interruption growth technique. Thus the emission wavelength of the InAs QDs on GaAs substrate can also be controlled.

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.

Glucose Oxidase-Coated ZnO Nanowires for Glucose Sensor Applications

  • Noh, Kyung-Min;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.669-672
    • /
    • 2008
  • Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.

Growth and Characterizations of Liquid-Phase-Epitaxial Fe doped GaAs

  • Ko, Jung-Dae;Kim, Deuk-Young;Kang, Tae-Won
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.253-259
    • /
    • 1997
  • The iron doped GaAs single crystals were grown by liquid phase epitaxial method and its some physical properties were evaluated with a view to investigate the crystal quality and emission property. The isomer shift of 0.303mm/sec is calculated from low-temperature M ssbauer spectroscopy and we know that charge state of iron ion is 3+ in GaAs crystal. In low temperature photoluminescence, the deep emission bands with wide-line width have been observed at 0.99eV and 1.15eV in addition to sharp excitonic peaks. We attributed that these deep emissions are originated from substitutional Fe-acceptor which has charge state of 3+ and 2+, respectively.

  • PDF

Synthesis and Optical Properties of the Semiconductor Lead Sulfide Nanobelts

  • Yang, Xiao hong;Wu, Qing Sheng;Ding, Ya Ping;Liu, Jin ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.377-380
    • /
    • 2006
  • The semiconductor PbS nanobelts (width 50-120 nm and length over 3 $\mu$m) were self-assembled in a simple reverse micelle solvent system containig the surfactant of polyoxyethylene (9) dodecy ether $(C_{12}E_9)$. The nanobelts synthesized were found to possess cube galena poly-crystal structure with high purity when analyzed by ED and X-ray diffraction. Significant “blue shift” from bulk material was observed on the PbS nanobelts using photoluminescence and UV-Vis spectroscopy. A mechanism involving the possible formation of nanobelts based on surfactant template was also proposed.

Effect of Ambient Gases on Thermal Annealed ZnO films deposited on Si(111) Substrates (Si(111) 기판 위에 증착된 ZnO 박막의 열처리 분위기에 따른 구조적, 광학적 특성 연구)

  • Lee, Ju-Young;Kim, Hong-Seung;Jung, Eun-soo;Jang, Nak-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.734-739
    • /
    • 2005
  • Zinc oxide films were deposited on Si (111) substrates by radio-frequency (rf)sputtering at a room temperature and post annealed in Na, air, and $H_2O$ ambient at temperatures between $800{\circ}C$ for 2 hrs. The properties were investigated by atomic force microscope (AFM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and photoluminescence (PL). Our experiments demonstrated that ZnO films have the better crystal quality for post thermal annealing and especially in $H_2O$ ambient. Even though thermal annealing reduced deep level emission somewhat, for further getting rid off deep level emission, oxygen contents should be adjusted. In our results, $H_2O$ ambient gave the best structural and optical properties.

Strained Ge Light Emitter with Ge on Dual Insulators for Improved Thermal Conduction and Optical Insulation

  • Kim, Youngmin;Petykiewicz, Jan;Gupta, Shashank;Vuckovic, Jelena;Saraswat, Krishna C.;Nam, Donguk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.318-323
    • /
    • 2015
  • We present a new way to create a thermally stable, highly strained germanium (Ge) optical resonator using a novel Ge-on-dual-insulators substrate. Instead of using a conventional way to undercut the oxide layer of a Ge-on-single-insulator substrate for inducing tensile strain in germanium, we use thin aluminum oxide as a sacrificial layer. By eliminating the air gap underneath the active germanium layer, we achieve an optically insulating, thermally conductive, and highly strained Ge resonator structure that is critical for a practical germanium laser. Using Raman spectroscopy and photoluminescence experiments, we prove that the novel geometry of our Ge resonator structure provides a significant improvement in thermal stability while maintaining good optical confinement.

A Study on ZnSSe : Te/ZnMgSSe DH Structure Blue and Green Light Emitting Diodes

  • Lee Hong-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.795-800
    • /
    • 2005
  • The optical properties of $ZnS_{y}Se_{1-x-y}:Te_x\;(x\;<\;0.08,\;y\∼0.11$) alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_{1}$Tel and $Te_{n}$ (n$\geq$2) cluster bound excitons, respectively. Bright blue (462 nm) and green (535 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer.