• Title/Summary/Keyword: Photoluminescence intensity

Search Result 478, Processing Time 0.028 seconds

Annealing effects of ZnO:Er films on UV emission (ZnO:Er막의 UV 발광에 미치는 열처리 효과)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.316-321
    • /
    • 2009
  • Er-doped ZnO(ZnO:Er) films were deposited onto MgO wafers by ultrasonic spray pyrolysis at 550 $^{\circ}C$ varying the concentration of Er in the deposition source from 0.5 wt% to 3.0 wt%. Annealing of the films in a vacuum was carried out to increase the intensity of ultraviolet(UV) emission from the films. The annealing temperature was between 600$^{\circ}C$ and 800$^{\circ}C$. The crystallographic properties and surface morphology of the films were investigated by X-ray diffraction(XRD)and scanning electron microscope(SEM), respectively. The properties of photoluminescence(PL) for the films were investigated by the dependence of PL spectra on the annealing temperature. X-ray photoelectron spectroscopy(XPS) was conducted to find the composition change in the films by the annealing.

Luminescent Properties of Er-Doped ZnO Phosphors (희토류계 Erbium을 도핑한 ZnO 형광체의 발광특성)

  • Song, Hyun-Don;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.58-62
    • /
    • 2006
  • Effects of doping concentration and annealing atmosphere on the luminescent properties of $Er^{3+}$ doped ZnO phosphor powders were investigated. Photoluminescence (PL) spectra of ZnO:Er exhibit an orange emission band at around 575 nm, while those of pure ZnO show a green emission at 520 nm. Emission difference between ZnO:Er and pure ZnO is attributed to the energy transfer of Er ions in ZnO. The highest PL intensity is obtained by doping 1 mol% Er to ZnO. Luminescent properties of ZnO:Er phosphors annealed at $N_2$+vacuum atmosphere are superior to those annealed at $N_2$ atmosphere.

Photoluminescence of YVO4:Eu3+ Prepared by Li2CO3 Addition

  • Moon, Seong-Jun;Jeong, Hyun-Gon;Kwak, Jong-Ho;Sohn, Kee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.658-661
    • /
    • 2008
  • Deep red color emitting $YVO_4:Eu^{3+}$ phosphors were investigated in an attempt to achieve promising performances in cold cathode fluorescent lamp (CCFL) applications. For this purpose, several additives such as LiF, $Li_2CO_3$ and $HBO_3$ were introduced in the processing. While two of the additives were ineffective, the inclusion of $LiCO_3$ during the solid state synthesis of $YVO_4:Eu^{3+}$ phosphors was proven to enhance photoluminescent intensity and the color chromaticity. Unlike the commercially available $YVO_4:Eu^{3+}$ red phosphor for use in PDP applications, pure $YVO_4:Eu^{3+}$ excluding phosphorous was shown to be favorable for CCFL applications, improving color chromaticity at 254nm excitations.

Influence of SiO2 Capping and Annealing on the Luminescence Properties of Larva-Like GaS Nanostructures

  • Kim, Hyunsu;Jin, Changhyun;Park, Sunghoon;Lee, Chongmu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3576-3580
    • /
    • 2012
  • Larva-like GaS nanostructures synthesized by the thermal evaporation of Ga metals and S powders were coated with $SiO_2$ by the sputtering technique. Transmission electron microscopy and X-ray diffraction analyses revealed that the cores and shells of the GaS-core/$SiO_2$-shell larva-like nanostructures were single crystal wurtzite-type hexagonal structured-GaS and amorphous $SiO_2$, respectively. Photoluminescence (PL) measurements at room temperature showed that the passivation of the larva-like GaS nanostructures was successfully achieved with $SiO_2$ without nearly harming the major emission from the wires. However, subsequent thermal annealing treatment was found to be undesirable owing to the degradation of their emission in intensity.

Photoluminescence Characteristics of YAG:Ce Phosphor by Combustion Method (연소합성법에 의한 YAG:Ce 형광체의 발광 특성)

  • Lee, Seung-Kyu;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.536-540
    • /
    • 2007
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by combustion method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG Phase can form through sintering at $1000^{\circ}C$ for 2 h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate Phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2sO_9$) observed in the sintering process. The powders absorbed excitation energy in the range $410{\sim}510\;nm$. Also, the crystalline YAG:Ce showed broad emission peaks in the range $480{\sim}600\;nm$ and had maximum intensity at 528 nm.

Luminescent Properties of SrTiO3 Phosphors doped with Pr,Eu and Al (Pr,Eu,Al을 첨가한 SrTiO3 형광체의 발광특성)

  • Park, Chang-Sub;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.527-530
    • /
    • 2007
  • [ $SrTiO_3$ ] red phosphors doped with Pr, Er and Al were synthesized by solid state reaction method. Three emission peaks in photoluminescence spectra of the $SrTiO_3:Eu$ Phosphors were observed at 583 nm, 610 nm and 685 nm. The emission peaks in the $SrTiO_3:Eu$ phosphors were associated with charge-transfer states. The decrease of photoluminescence intensity in $SrTiO_3:Eu,Al$ phosphors with doping Al ions was interpreted by the change of charge-transfer states.

New doping technique of Mn Activator on ZnS Host for Photoluminescence Enhancement

  • Wentao, Zhang;Lee, Hong-Ro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.9-10
    • /
    • 2008
  • Triple layers structure of $SiO_2$/ZnS:Mn/ZnS was synthesized by using ion substitution and chemical precipitation method. Each layer thickness was controlled by adjusting the concentration of manganese (II) acetate ($Mn(CH_3COO)_2$) and tetraethyl orthosilicate (TEOS). The structure and morphology of prepared phosphors were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microscopic analyzer (EPMA). Photoluminescence (PL) properties of ZnS with different layer thickness and amount of Mn activator were analyzed by PL spectrometer. PL emission intensity and PL stability were analyzed for evaluating effects of Mn activator.

  • PDF

Chemical Bath Deposition and the Optical Properties of Nanostructured ZnS Thin Films (용액성장법에 의한 ZnS 나노 박막의 제작과 광학적 특성)

  • 이현주;전덕영;이수일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.739-742
    • /
    • 2000
  • Nanostructured ZnS thin films were grown on the slide glass substrate by the chemical bath deposition using an aqueous so1ution Of ZnSO$_4$and CH$_3$CSNH$_2$at 95$^{\circ}C$. The average grain sizes of the ZnS thin film estimating from the Debye-Scherrer formula are 4.8 nm. The optical transmittance edge of the ZnS thin films (4.0 eV) was shifted to the shelter wavelength compared with that of the bulk ZnS (3.67 eV) due to the quantum size effects. The ZnS thin films showed a strong photoluminescence intensity and a sharp emission band from 410 to 480 nm 3t room temperature. The PWHM of photoluminescence peak was about 40 nm. For the viloet(410 nm) and blue(480 nm) emission of the ZnS thin films, the temperature dependence can be described by an Arrhenius equation with an activation energy of 168 and 157 meV, respectively.

  • PDF

Formation mechanism of silicon nanocrystals fabricated by pulsed laser deposition (펄스레이저 증착법에 의한 실리콘 나노결정 형성 메커니즘)

  • Kim, Jong-Hoon;Jeon, Kyeong-Ah;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.162-164
    • /
    • 2004
  • Nanocrystalline silicon(nc-Si) thin films on the silicon substrates have been prepared by pulsed laser deposition(PLD). The optical and structural properties of films have been investigated depending on deposition temperature, annealing, and oxidation process. When the deposition temperature increased, photoluminescence(PL) intensity abruptly decreased and peaks showed red shift. Annealing process could reduce the number of defect centers. Oxidation had a considerable effect upon the formation and isolation of the nanocrystals. These results indicate that the formation mechanism of Si nanocrystals grown by PLD can be explained by three steps of growth, passivating defect centers, and isolation, sequentially.

  • PDF

Growth and Photoluminescience Properties for $AgGaSe_2$ Single Crystal Thin Films ($AgGaSe_2$ 단결정 박막 성장과 광발광 특성)

  • Hong, Kwang-Joon;Yun, Seuk-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.159-160
    • /
    • 2006
  • $AgGaSe_2$ single crystal thin films grown by using hot wall epitaxy (HWE) system. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition ($E_x$) observable only in high quality crystal and neutral bound exciton ($D^{\circ}$,X) having very strong peak intensity. And, the full width at hall maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF