• Title/Summary/Keyword: Photoluminescence intensity

Search Result 478, Processing Time 0.03 seconds

Photoluminescence properties of oxy-fluoride glass-ceramics of La2O3-CaF2-Al2O3-SiO2 system (La2O3-CaF2-Al2O3-SiO2 계 oxy-fluoride 결정화 유리의 광 발광 특성)

  • Ha, Taewan;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.84-88
    • /
    • 2021
  • The change of the photoluminescence properties of La2O3-CaF2-Al2O3-SiO2 glass-ceramics doped with rare earth material, that is used as laser and optical sensors, was analyzed according to heat treatment temperature. The heat treatment conditions for fabricating glass-ceramics were obtained through non-isothermal thermal analysis, and X-ray diffraction analysis was performed to determine the degree of crystal growth and kinds of crystal phases generated according to the heat treatment temperature. Using Scherrer's equation, it was predicted that crystals with a size of 25~40 nm would be generated inside the glass-ceramics. Photoluminescence (PL) analysis showed that the specimens heat-treated at 660℃ to 670℃ for 1 hour had the highest PL intensity. Also, from the CIE color coordinate analysis, all glass-ceramics specimens emitted red-orange light regardless of the heat treatment condition.

Thermal Stability of CaMgSi2O6:Eu2+ Phosphor by EPR Measurement (EPR 측정에 의한 CaMgSi2O6:Eu2+ 형광체의 열적 안정성 연구)

  • Heo, Kyoung-Chan;Kim, Yong-Il;Ryu, Kwon-Sang;Moon, Byung-Kee
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.246-249
    • /
    • 2005
  • The blue-color emitting phosphor powder, $CaMgSi_{2}O_6:Eu^{2+}(CMS:Eu^{2+})$ was synthesized by the solid-state reaction method. The synthesized powder was annealed from room temperature to $1,100^{\circ}C$ in air. Its PL property and valence state of Eu atoms was measured by the photoluminescence (PL) and the electron paramagnetic resonance (EPR) spectrometers, respectively. The PL intensity was stable to $700^{\circ}C$, but drastically decreased to $1,100^{\circ}C$. The behavior of EPR intensity was very similar to the PL intensity. The EPR measurement showed that decreased intensity of the PL was caused to the oxidation from the ion $Eu^{2+}$ to $Eu^{3+}$ ions. The EPR spectrometer was powerful as a tool that could distinguish between the valence states of Eu atom as a dopant in various phosphors.

Size Dependence of the Photo- and Cathodo-luminescence of Y2O2S:Eu Phosphors

  • Sung, Hye-Jin;Ko, Ki-Young;Kim, Hyun Soo;Kweon, Seok-Soon;Park, Jong-Yun;Do, Young-Rak;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.841-846
    • /
    • 2006
  • $Y_2O_2S$:Eu phosphors were synthesized via solid-state reactions. $Y_2O_2S$:Eu phosphor particles of various sizes were obtained by varying the firing temperature and firing time. The photoluminescence properties of these $Y_2O_2S$:Eu phosphors were examined. In addition, the cathodoluminescence properties of the $Y_2O_2S$:Eu phosphors were examined for applied voltages of 3-8 kV. The relationship between the luminescence intensity and particle size of the$Y_2O_2S$:Eu phosphors was investigated. The photoluminescence and cathodoluminescence of the $Y_2O_2S$:Eu phosphors are affected differently by variations in particle size.

Growth and photoluminescence of the strained ZnTe/ZnMnTe single quantum well (스트레인을 받는 ZnTe/ZnMnTe 단일양자우물의 성장과 광발광 특성)

    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.269-269
    • /
    • 2002
  • ZnTe/ZnMnTe single quantum well of high quality was grown by hot-wall epitaxy, in which ZnMnTe layer was used as a barrier. It was found that ZnTe well layer was under severe strain. Very sharp luminescent peaks of the heavy-hole exciton (el-hhl) and the light-hole exciton (el-lhl) were observed from the photoluminescence (PL) measurement. As the well layer thickness increases, the peaks associated with excitons of (el-hhl) and (el-lhl) were shifted toward the lower energy side. The temperature dependence of the PL peak intensity was well explained by the thermal activation theory.

Growth and photoluminescence of the strained ZnTe/ZnMnTe single quantum well (스트레인을 받는 ZnTe/ZnMnTe 단일양자우물의 성장과 광발광 특성)

  • 최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.267-271
    • /
    • 2002
  • ZnTe/ZnMnTe single quantum well of high quality was grown by hot-wall epitaxy, in which ZnMnTe layer was used as a barrier. It was found that ZnTe well layer was under severe strain. Very sharp luminescent peaks of the heavy-hole exciton (el-hhl) and the light-hole exciton (el-lhl) were observed from the photoluminescence (PL) measurement. As the well layer thickness increases, the peaks associated with excitons of (el-hhl) and (el-lhl) were shifted toward the lower energy side. The temperature dependence of the PL peak intensity was well explained by the thermal activation theory.

Luminescent Characteristics of Bi Co-doped ZnS:Mn Yellow Phosphors for White Light Emitting Diodes (Bi를 첨가한 백색 LED용 ZnS:Mn 황색형광체의 발광특성)

  • Jung, Jong-Hun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.46-49
    • /
    • 2011
  • Bi co-doped ZnS:Mn,Bi yellow phosphors for white light emitting diodes were prepared by the conventional solidstate reaction method. The optical and structural properties of ZnS:Mn,Bi phosphors were investigated by x-ray diffraction, scanning electro microscopy and photoluminescence. ZnS:Mn,Bi phosphors showed XRD patterns of hexagonal structure. The photoluminescence of ZnS:Mn,Bi phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn,Bi phosphors was associated with the 4T1 ${\rightarrow}$ 6A1 transition of the Mn2+ ions. The highest photoluminescent intensity of the phosphors under 405 nm and 450 nm excitation was obtained at Bi concentration of 7mol%. The optimum mixing conditions with epoxy and yellow phosphor for white light emitting diodes were observed in a ratio of epoxy:yellow phosphor of 1:3.5. The CIE chromaticity of the white LED at the 1:3.5 ratio was X = 0.3454 and Y = 0.2449.

Preparation and Photoluminescent Properties of Ca2PO4Cl Activated by Divalent Europium

  • Park, In Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.63-67
    • /
    • 2016
  • Divalent europium-activated $Ca_2PO_4Cl$ phosphor powders were prepared by a chemical synthetic method followed by heat treatment in reduced atmosphere, and the crystal structures, morphologies and photoluminescence properties of the powders were investigated by x-ray powder diffraction, scanning electron microscope and spectrometer. The effect of Ca/P mole ratio at the starting materials on the final products was evaluated. The optimized synthesis condition obtained in this study was Ca/P mole ratio of 2.0. The present phosphor materials had higher photoluminescence intensity and better color purity than the commercial blue phosphor powders, $(Ca,Ba,Sr)_{10}(PO_4)_6Cl_2:Eu^{2+}$. The result of excitation spectrum measurement indicated that the excitation efficiency of the synthesized powders was higher for the long-wavelength UV region than that of the commercial phosphor. It was thus concluded that the samples prepared in this study can be successfully applied for the light-emitting devices such as LED excited with long-wavelength UV light sources.

Temperature-dependent Luminescence Properties of Digital-alloy In(Ga1-zAlz)As

  • Cho, Il-Wook;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.27 no.3
    • /
    • pp.56-60
    • /
    • 2018
  • The optical properties of the digital-alloy $(In_{0.53}Ga_{0.47}As)_{1-z}/(In_{0.52}Al_{0.48}As)_z$ grown by molecular beam epitaxy as a function of composition z (z = 0.4, 0.6, and 0.8) have been studied using temperature-dependent photoluminescence (PL) and time-resolved PL (TRPL) spectroscopy. As the composition z increases from 0.4 to 0.8, the PL peak energy of the digital-alloy $In(Ga_{1-z}Al_z)As$ is blueshifted, which is explained by the enhanced quantization energy due to the reduced well width. The decrease in the PL intensity and the broaden FWHM with increasing z are interpreted as being due to the increased Al contents in the digital-alloy $In(Ga_{1-z}Al_z)As$ because of the intermixing of Ga and Al in interface of InGaAs well and InAlAs barrier. The PL decay time at 10 K decreases with increasing z, which can be explained by the easier carrier escape from InGaAs wells due to the enhanced quantized energies because of the decreased InGaAs well width as z increases. The emission energy and luminescence properties of the digitalalloy $(InGaAs)_{1-z}/(InAlAs)_z$ can be controlled by adjusting composition z.

Photoluminescence Imaging of SiO2@ Y2O3:Eu(III) and SiO2@ Y2O3:Tb(III) Core-Shell Nanostructures

  • Cho, Insu;Kang, Jun-Gill;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.575-580
    • /
    • 2014
  • We uniformly coated Eu(III)- and Tb(III)-doped yttrium oxide onto the surface of $SiO_2$ spheres and then characterized them by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction crystallography and UV-Visible absorption. 2D and 3D photoluminescence image map profiles were reported for the core-shell type structure. Red emission peaks of Eu(III) were observed between 580 to 730 nm and assigned to $^5D_0{\rightarrow}^7F_J$ (J = 0 - 4) transitions. The green emission peaks of Tb(III) between 450 and 650 nm were attributed to the $^5D_4{\rightarrow}^7F_J$ (J = 6, 5, 4, 3) transitions. For annealed samples, Eu(III) ions were embedded at a $C_2$ symmetry site in $Y_2O_3$, which was accompanied by an increase in luminescence intensity and redness, while Tb(III) was changed to Tb(IV), which resulted in no green emission.

Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis (고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성)

  • Ju Seo Hee;Koo Hye Young;Kim Do Youp;Kang Yun Chan
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.