• Title/Summary/Keyword: Photolithographic

Search Result 107, Processing Time 0.1 seconds

The Investigation of Photolithographic Patterning Method for Polymer Light Emitting Diodes (PLEDs) (고분자 전기 발광 다이오드(PLEDs)를 위한 포토리소그라피 패터닝 방법에 관한 연구)

  • Kim, Mi-Kyung;Lee, Jeong-Ik;Kim, Duck-Il;Hwang, Chi-Sun;Yang, Yong-Suk;Oh, Ji-Young;KoPark, Sang-He;Chu, Hye-Yong;Kim, Suk-Kyung;Hwang, Do-Hoon;Lee, Hyung-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.106-108
    • /
    • 2004
  • We have investigated the photolithographic patterning method of light emitting polymer film for polymer light emitting diodes (PLED). Blue light emitting polymers based on polyfluorene, which can be cured photochemically to yield an insoluble form, have been synthesized using Ni(0) mediated Yamamoto polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope analysis, UV/visible spectroscopy, and photoluminescence. We have successfully fabricated PLEDs composed of the patterned emissive layer and their electroluminescence property has been also investigated. In this presentation, the detailed photolithographic patterning method and its application for polymer light emitting display will be discussed.

  • PDF

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

Formation of Black Matrix and Ag Electrode Patterns by Photolithographic Process for High Resolution PDP

  • So, Jae-Yong;Kwon, Hyeok-Yong;Kim, Suk-Kyung;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.369-372
    • /
    • 2008
  • Black matrix and Ag electrode with uniform line pitches were successfully fabricated through the photolithographic process by using the photosensitive black pastes and Ag pastes with optimized photosensitive properties for high resolution PDPs. The photosensitivity of the black and Ag pastes in the photolithographic process was investigated with the variation of photosensitive BM and Ag pastes and the photolithography process conditions. The important components and formulation of the photosensitive BM and Ag paste we discussed.

  • PDF

Photolithographic Method of Patterning Barrier Ribs for PDP by Green Sheet

  • Park, Lee-Soon;Jang, Dong-Gyu;Hur, Young-June;Lee, Sung-Ho;Kim, Duck-Gon;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1225-1228
    • /
    • 2005
  • Barrier ribs in the plasma display panel(PDP) function to maintain the discharge space between the glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, and barrier rib powder of which surface was treated with fumed silica particles. Study on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation and photolithographic process, it was found that photolithographic patterning of barrier ribs with photosensitive barrier rib green sheet could be used in the fabrication of high resolution PDP.

  • PDF

Photosensitive Electrode Paste Formulation and Its Effect on Photolithographic Process

  • Park, Lee-Soon;Im, Moo-Sik;Park, Jin-Woo;Kim, Hong-Tak;Ryu, Jae-Hwa;Park, Seung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.381-384
    • /
    • 2003
  • Photosensitive electordes(Ag and Black) are widely used in the patterning of both address and bus electrodes on the rear and front panel of plasma display panel (PDP). As the need for high resolution(>XGA) and large area(>60 inches) PDP is increased, basic understanding of each component of formulation on the photolithographic process of patterning electrodes are required in order to increase the yield in the production of PDP. In this work, the materials and amount of necessary components of photosensitive electrode paste and their effect on the photolithographic process of patterning electrodes were studied.

  • PDF

Aqueous alkali-developable Photosensitive Barrier Rib Paste for PDP and Photolithographic Process

  • Park, Lee-Soon;Jeong, Seung-Won;Kim, Soon-Hak;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.177-179
    • /
    • 2000
  • Barrier rib for the plasma display panel (PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving poly(MMA-co-MAA) binder polymer in butyl carbitol(BC) solvent at 15 wt% concentration. To this solution were added a mixture of functional monomers , Irgacure 651 photoinitiator, and barrier rib power and then the whole mixture was dispersed in the three roll mill for 2 hour. The effect of component and concentration of photosensitive barrier rib paste was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to 110-120 ${\mu}m$ height and 80-90 ${\mu}m$ width.

  • PDF

Photolithographic Patterning of Electrically Conducting Polypyrrole Film (전기전도성 폴리피롤 필름의 Photolithographic Patterning)

  • 최명수;송기태;김영철;김영준;이준영
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.338-340
    • /
    • 2001
  • 최근에 일반적인 고분자 재료의 특성을 보유하며 본질적으로 전기전도성을 띠는 고분자 재료들이 발견되어 이러한 고분자 재료의 응용에 대한 연구가 광범위하게 수행되어 왔으며, 특히 전기전자 산업의 급속한 발전으로 그 중요성이 더욱 커지고 있다. 그 중에서도 본질적 전기전도성 고분자인 폴리피롤 (PPy)은 합성이 쉽고 전기전도도와 안정성이 우수하며, 좋은 기계적 특성과 전기적 안정성 그리고 광학특성을 가지고 있어서 여러 응용분야에서 연구가 진행되어 왔다[1,2]. (중략)

  • PDF

Fabrication of FET-Type $Ca^{2+}$ Sensor by Photolithographic Method and Its Characteristics (Photolithography에 의한 FET형 $Ca^{2+}$ 센서의 제작 및 특성)

  • Park, Lee-Soon;Hur, Young-Jun;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.15-22
    • /
    • 1996
  • FET type $Ca^{2+}$ sensor(Ca-ISFET) was fabricated by micropool and photolithographic method utilizing photosensitive polymer as membrane materials. When OMR-83 negative photoresist was used as membrane material, it gave good sensitivity by micropool method with dioctyladipate as plasticizer but it could not be used in the photolithographic method. When poly(viny1 butyral), PVB was used as membrane material, it gave relatively high sensitivity ($23{\pm}0.2\;mV/decade$) for $Ca^{2+}$ concentration range of $10^{-4}{\sim}10^{-1}\;mole/{\ell}$ by photolithographic method. PVB also provided good adhesion to the pH-ISFET base device without adhesion promoter pretreatment and any plasticizer.

  • PDF

Photosensitive Barrier Rib Paste for PDP and Photolithographic Process (Plasma Display Panel용 감광성 격벽 재료 및 Photolithography 공정 성질)

  • Park, Lee Soon;Jeong, Seung Won;Oh, Hyun Shik;Kim, Soon Hak;Song, Sang Moo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1114-1118
    • /
    • 1999
  • Barrier rib for the plasma display panel(PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving ethylcellulose(binder polymer) in butyl carbitol(BC)/butyl carbitol acetate(BCA) =30/70 wt % mixture solvent at 15 wt % concentration. To this solution a mixture of functional monomers consisted of tripropyleneglycol diacrylate/ pentaerythritol triacrylate = 50/50 wt %, Irgacur 651 photoinitiator, and barrier rib powder were added and then the whole mixture was mixed in the three roll mill for 2 hr. The effect of component and concentration of photosensitive barrier paste on the photolithographic process was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to $100{\mu}m$ height.

  • PDF

The Investigation of Photolithographic Patterning Method for Polymer Light Emitting Diodes

  • Kim, Mi-Kyung;Lee, Jeong-Ik;Kim, Duck-Il;Oh, Ji-Young;Hwang, Chi-Sun;KoPark, Sang-He;Yang, Yong-Suk;Chu, Hye-Yong;Kim, Suk-Kyung;Hwang, Do-Hoon;Lee, Hyung-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.592-594
    • /
    • 2004
  • We have investigated the photolithographic patterning method of light emitting polymer film for polymer light emitting diodes (PLEDs). Blue light emitting polymers based on polyfluorene, which can be cured photochemically to yield an insoluble form, have been synthesized using Ni(0) mediated Yamamoto polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope analysis, UV/visible spectroscopy, and photoluminescence. We have successfully fabricated PLEDs composed of the patterned emissive layer and their electroluminescence property has been also investigated. In this presentation, the detailed photolithographic patterning method and its application for polymer light emitting display will be discussed.

  • PDF