• Title/Summary/Keyword: Photogrammetry System

Search Result 1,030, Processing Time 0.027 seconds

A Study on MBES Error Data Removing using Motion Sensor (Motion Sensor를 이용한 MBES 오측자료 제거 연구)

  • Kang, Moon-Kwon;Choi, Yun-Soo;Chang, Min-Chol;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Sounding data is the essential source for the safety of ships navigation system, and fundamental to the reasonable usage and maintenance of the ocean as well. As IT tech, positioning equipment such as GPS and INS, echo sounder are developed, recently, the precise submarine topography database bas been built by Multi-Beam Echo Sounder. However, MBES data includes some inevitable error caused by several factor, and some data have errors where the terrain is wobble. The error, which causes the $moir\acute{e}$ pattern error is the main factor hindering the accuracy of MBES data results, and therefore it is necessary to figure out the main cause of the error for the improvement of the accuracy by removing error data. On this research, the main cause of the error data is studied by analyzing motion sensor value of data including the $moir\acute{e}$ pattern error. Thus, as the result of examination, it turns out that the $moir\acute{e}$ pattern error is related to the standard deviation of Roll, and error data values are results of the non-correspondence between Swath data and Roll values caused by the drastic change of Roll values. Accordingly, the error data is removed by comparing between the gradient of Swath data and Roll values. Finally, as the result of removing error data, it is expected to be able to estimate the quality of MBES using the standard deviation of Motion sensor's Roll value, and calculate the additive error factor, which minimize non-corresponding data, and also this research must be contributed to improve the accuracy of sounding for small vessels with lots of motion in the bad circumstance for navigation.

Coordinates Computation of the EAREF 2012.0 for Earth Observations in the East-Asia Region (동아시아지역의 GNSS CORS 지구관측 네트워크(EAREF 2012.0) 좌표산정 연구)

  • Lee, Young-Jin;Jung, Kwang-Ho;Ryu, In-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.11-22
    • /
    • 2013
  • EAREF(East-Asia Reference Frame) is based on the Eurasian Plate which is considered relatively stable. It is managing the coordinate reference system by a specific epoch through the networking of GNSS CORS of the East-Asia region covering North-east and South-east Asia. Also it'll be the goal to assist integrating the geospatial information management. This study aims to estimate the precise coordinates of EAREF in the East-Asia region at the epoch of January 1st of 2012 (2012.0) after the Great East Japan Earthquake. It is related to 1st stage study for construction of data sets and made up the data processing techniques through the various experiments to upgrade the accuracy. Based on the results of the study, we calculated the initial precise coordinates of the EAREF network from the 2012.0 epoch covering the East-Asia region. The accuracy of the estimated coordinates was compared with the weekly solution provided by the IGS analysis centre. The differences were 0.004m, 0.007m and 0.009m at the directions of X, Y and Z respectively. In addition, this study reviews the next procedure how to implement and upgrade the EAREF network.

Redefinition of the Original Benchmark Height using Long-term Tide Observations Analysis and GPS Levelling Methods (장기간 조위관측자료 분석과 GPS 수준측량 수준원점 성과 재정의)

  • Jung, Tae-Jun;Yoon, Hong-Sic;Hwang, Jin-Sang;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.393-403
    • /
    • 2011
  • In this study, we suggested the period of tide observations is proper to calculate the mean sea level(MSL) precisely on Incheon tide station using wavelet analysis, and newly determined then the vertical reference surface of Korea using the calculated MSL. In order to calculate the height difference between the calculated MSL and specific ground station (ICGP) near the Incheon tide stations, we performed the laser measurements directly to the sea surface where located below ICGP. The orthometric-height of ICGP was determined that corrected the height difference to the calculated MSL using linear interpolation method. Finally, we connected the orthometric-height of ICGP with the original benchmark (ORBM) using GPS leveling methods for determining the new orthometric-height of ORBM. As the results, there is a variation amount of 0.026m between the new MSL was calculated in this study and old MSL was calculated in 1910's. Also, there is a difference of 0.035m between the new and old orthometric-heights of ORBM. The connection (or leveling) error of 0.009m was revealed in new orthometric height of ORBM with consideration of MSL variation which may caused by the error of GPS ellipsoid height and/or geoid model. In this study, we could be determined precisely the orthometric-height of ORBM based on the new MSL of Incheon Bay using only GPS leveling method, not a spirit leveling method. Therefore, it is necessary to determine the vertical datum strictly using long-term and continuously tide observations more than 19 years and to use the GPS leveling method widely in the height leveling work for the effective changeover from the orthonormal to the orthometric in national height system.

Comparison of Methodology and Accuracy of Digital Mapping of Forest Roads (수치임도망도 제작방법 및 정확도 비교)

  • Kim Tae-Geun;Yoon Jong-Suk;Woo Choong-Shik;Lee Kyu-Sung;Hong Chang-Hee
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.195-209
    • /
    • 2005
  • Forest road has been an essential infrastructure for various forestry practices as well as for recreational use, disaster management, and local economics promotion. Since 1980s, extensive network of forest roads has been constructed as an national project in Korea. However, due to the minimal-budget of the project, accurate maps of forest road are not usually available. Although forest road map is a main thematic layer for the forest Geographic Information System (FGIS), its locational accuracy has not been sufficient for the practical applications and, therefore, the update of digital forest road maps is urgent. The objectives of this study is to compare ae methodology of generating and updating digital forest road maps from the aspects of the map accuracy and the efficiency of methods. Four mapping methods (GPS surveying, satellite imagery, ortho aerial photograph, and digital photogrammetry) were applied to generate the forest road maps over the study area of Mt. Oseo in Chungchungnam-do, which has a 35km forest roads distributed in national, public and private forests. The forest road Imp produced by digital photogrammetric method is the most accurate and comparable to GPS surveying although it required the greatest amount of labor time.

  • PDF

Assessment of Parallel Computing Performance of Agisoft Metashape for Orthomosaic Generation (정사모자이크 제작을 위한 Agisoft Metashape의 병렬처리 성능 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • In the present study, we assessed the parallel computing performance of Agisoft Metashape for orthomosaic generation, which can implement aerial triangulation, generate a three-dimensional point cloud, and make an orthomosaic based on SfM (Structure from Motion) technology. Due to the nature of SfM, most of the time is spent on Align photos, which runs as a relative orientation, and Build dense cloud, which generates a three-dimensional point cloud. Metashape can parallelize the two processes by using multi-cores of CPU (Central Processing Unit) and GPU (Graphics Processing Unit). An orthomosaic was created from large UAV (Unmanned Aerial Vehicle) images by six conditions combined by three parallel methods (CPU only, GPU only, and CPU + GPU) and two operating systems (Windows and Linux). To assess the consistency of the results of the conditions, RMSE (Root Mean Square Error) of aerial triangulation was measured using ground control points which were automatically detected on the images without human intervention. The results of orthomosaic generation from 521 UAV images of 42.2 million pixels showed that the combination of CPU and GPU showed the best performance using the present system, and Linux showed better performance than Windows in all conditions. However, the RMSE values of aerial triangulation revealed a slight difference within an error range among the combinations. Therefore, Metashape seems to leave things to be desired so that the consistency is obtained regardless of parallel methods and operating systems.

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles (수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석)

  • Han, Youkyung;Kim, Taeheon;Kim, Yeji;Lee, Jeongho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.491-498
    • /
    • 2019
  • This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.

Using 3-Dimensional Simulation for Environmently Friendly Road (친환경적도로에 대한 3차원시뮬레이션 적용)

  • Oh Il-Oh;Choi Hyun;Kang In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.425-429
    • /
    • 2006
  • 본 연구는 VGIS(Virtual Geographic Information System)을 이용, 환경친화적인 도로건설을 위해 실제 좌표를 사용하므로 3차원 도로의 선형과 구조물을 설계하였다. 그리고 시공 중에 발생 할 수 있는 민원문제 및 설계변경 시 효율적인 의사결정 할 수 있도록 하였다. 대상지역은 전라남도 장흥군의 최대 역점사업인 관광을 테마로 한 정남진 가는 길을 컨셉으로 한 '가고 싶은 길', '보고싶은 다리', 기억하고픈 터널'을 주제로 설계하였으며 명실공히 남도의 새로운 관광명소가 될 자연관광도로가 될 것으로 기대된다. 기존의 3차원 설계에서는 평면적인 선형과 구조물의 형상을 이해하는데 상당한 시간이 소요되었지만, 구조물을 3차원으로 설계함으로써, 비전문가라도 구조물을 쉽게 파악 할 수 있었다. 그리고 3차원 설계는 기존 구조물과 신설될 구조물 사이에 공사 중 발생할 수 있는 환경 및 민원문제를 사전에 파악할 수 있었다. 또한, 실제와 같이 구현된 도로와 구조물의 시뮬레이션을 통하여 기존의 각종 의사 결정에 있어 보다 시각적 효과를 증진시켜 효율적인 의사결정을 가능하게 하였다. 본 연구에서는 실제 평면 설계에 쓰이는 좌표값을 3차원설계에 적용하였다. 도로 노선 및 경관분석에 많은 도움이 될 것으로 보이며 VGIS를 이용하므로 도시계획, 식물, 토양. 수로 또는 도로형태, 홍수계획 등 많은 일들이 평가에 사용된다. 여기서는 구조물 3차원 설계에 관한 기초적인 연구를 시행하였으며, 3차원설계를 통해 의사결정시 효율적인 판단을 할 수 있었고, 환경 친화적 시공 및 설계에 대한 연구가 이루어져야 될 것으로 판단된다.안전관리를 위해 채석장에 안전표지판을 설치하여야 하며, 실내가공 작업장의 자동이동시스템을 작업별로 채색하여 식별을 용이하게 하여야 하겠다. 또한 이 연구 결과를 영세사업장의 산업간호프로그램인 'Clean 3D'사업에서 적용하여 우리나라 채석사업장 근로자 건강관리를 발전시켜야 하겠다. 확장기 혈압에서 RZS와 DAD의 일치도와 평균을 중심으로 더 넓게 퍼져있어 낮은 일치도를 보였으며 또 DAD와 RMS의 혈압치는 숫자 선호도를 볼 수 있는데 특히 RMS는 더 뚜렷하게 나타났는데 확장기 혈압의 최빈치(30.6)는 100mmHg이었다. 혈압치들이 가장 가까이 "0"점으로 치우쳐져 있었다. RZS의 Central tendency는 DAD와 RMS보다 뚜렷하였다. 결론적으로 RZS는 이 연구목적으로 가장 적절함을 보여준다.청소년들의 학교급식에 대한 만족도를 높이기 위해서 다음과 같은 제언을 하고자 한다. 먼저, 학교급식에 대한 식단 작성 시 학생들이 학교에서 제공되기 원하는 식단에 대한 의견을 받고 그 의견에 대한 결과를 게시하여 학생들이 제공되기 원하는 식단을 급식 시 제공하여 학생들이 식단선택에 동참할 수 있는 기회를 주는 것이 바람직하겠다. 또한 영양사는 학급의 반대표와의 정기적인 모임을 가짐으로서 학생들의 불만사항 및 개선 요구사항에대해 서로 의견을 교환하여 설문지조사가 아닌 직접적인 대화를 하여 문제점을 파악하고자 하는 적극적인 자세가 필요하겠다. 특히 아침식사의 결식 빈도가 높았고 이는 급식성과에 부정적인 영향을 줄 뿐 아니라 학교에서 제공하는 음식의 섭취정도에도 영향을 주고 있으므로 학생들에게 학부모와 전담교사 및 학교영양사는 학생들

  • PDF

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

Implementation of a Kinematic Network-Based Single-Frequency GPS Measurement Model and Its Simulation Tests for Precise Positioning and Attitude Determination of Surveying Vessel (동적네트워크 기반 단일주파수 GPS 관측데이터 모델링을 통한 측량선의 정밀측위 및 자세각결정 알고리즘 구현과 수치실험에 의한 성능분석)

  • Hungkyu, Lee;Siwan, Lyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In order to support the development of a cost-effective river bathymetric system, this research has focused on modeling GPS observables, which are obtained by array of five single-frequency receivers (i.e., two references and three rovers) to estimate the high accurate kinematic position, and the surveying vessel altitude. Also, by applying all GPS measurements as multiple-baselines with constraining rover baselines, we derived the socalled ‘kinematic network model.’ From the model, the integer-constrained least-squares (LS) for position estimation and the implicit LS for attitude determination were implemented, while a series of simulation tests with respect to the baseline lengths around 2km performed to demonstrate its accuracy analysis. The on-the-fly (OTF) ambiguity resolution tests revealed that ninety-nine percents of time-to-fix-first ambiguity (TTFF) can be decided in less than two seconds, when the positioning accuracy of ambiguity-fixed solutions was assessed as the greater than or equal to one and two centimeters in horizontal and vertical, respectively. Comparing to the GPS-derived attitudes, the achievable accuracy gradually descended in sequence of yaw, pitch and roll due to the antenna geometric configuration. Furthermore, the RMSE values for the baseline lengths of three to six meters were within ±1′for yaw, and less than ±10′and ±20′for pitch and roll, respectively, but those of between six to fifteen meters were less than ±1′for yaw, ±5′for pitch, and ±10′for roll.

The Use of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC보정을 위한 국가 통합기준점의 활용)

  • Ahn, Kiweon;Lee, Hyoseong;Seo, Doochun;Park, Byung-Wook;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2014
  • High resolution satellite images have to be oriented and geometrically processed from GCPs(Ground Control Points) to generate precise DEMs(Digital Elevation Models) and topographic maps. In Korea, thousands of national UCPS(Unified Control Points) are established and distributed all over the country by the Korean NGII(National Geographic Information Institute). For that reason, UCPs can be easily searched and downloaded by the national-control-point-record-issues system. Following the study, we suggested the sky-view and road-view from web-portals for searching and identifying UCPs on the images. To evaluate the usefulness of UCPs in RPCs(rational polynomial coefficients) adjustment of the high resolution satellite images, the one UCP, which of using simple the control point, has been applied to adjust the vendor-provided RPCs of the KOMPSAT-3 images. As a result, the positioning error of corrected RPCs was approximately one pixel and one meter. From this experiment, we conclude that the UCPs will be able to replace the survey GCPs for mapping with the satellite images or aerial images.