• Title/Summary/Keyword: Photogrammetry System

Search Result 1,030, Processing Time 0.023 seconds

Development of Pine Wilt Disease (Bursaphelenchus Xylophilus) Prevention System (소나무재선충병 방제관제시스템 개발에 관한 연구)

  • Seo, Bong-Sang;Jeon, Hyeong-Seob;Kim, Jun-Beom;Cho, Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.283-287
    • /
    • 2007
  • Pine Wilt Disease (Bursaphelenchus Xylophilus) has been attacked since 1988, then it becomes very serious problem of the all over the country. Government has been invested a lot of money to prevent but it is hard to survey the damaged area and ineffectively control the process of prevention. Therefore, this study is focused on development of Pine Wilt Disease (Bursaphelenchus Xylophilus) Prevention System using GIS and GPS through constructiong database of digital map, satellite imagery and attribute data and development component for desktop PC, internet and mobile system to realtime data transmission between project manager and field worker. Especially, we developed the mobile system that can transmit field conditions in realtime using GPS, GIS and CCD camera, the telecommunication control server that transmit received field condition data to web connecting module and system manager, the web system for end user to notify prevention details, the control system lot manager to recognize filed conditions and to control field workers and the wireless telecommunication module to connect in realtime between field and control center.

  • PDF

Development of a Portable Multi-sensor System for Geo-referenced Images and its Accuracy Evaluation (Geo-referenced 영상 획득을 위한 휴대용 멀티센서 시스템 구축 및 정확도 평가)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.637-643
    • /
    • 2010
  • In this study, we developed a Portable Multi-sensor System, which consists of a video camera, a GPS/MEMS IMU and a UMPC to acquire video images and position/attitude data. We performed image georeferencing based on the bundle adjustment without ground control points using the acquired data and then evaluated the effectiveness of our system through the accuracy verification. The experimental results showed that the RMSE of relative coordinates on the ground point coordinates obtained from our system was several centimeters. Our system can be efficiently utilized to obtain the 3D model of object and their relative coordinates. In future, we plan to improve the accuracy of absolute coordinates through the rigorous calibration of the system and camera.

Experimental Study on Automatic Car-Navigation by Satellite Positioning System (인공위성측량에 의한 자동차 자동위치결정에 관한 실험적 연구)

  • 강인준;정재형;장용구
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 1993
  • Position fixing is determined by triangulation, traverse surveying and astronomy surveying, However, when the station like a car move, it is impossible to determine the location of car. Satellite position fixing system can be used anywhere on earth arranged in 20, 000 km high with 24 satellites. The theoretical method of the fixing composition is possible to use satellite position fixing system. This paper is the part of the experiment which is dose for the development of the system used in Car-position fixing system. Also, this study is the comparison of one point positioning system and relative positioning system.

  • PDF

Small Scale Map Projection and Coordinate System Improvement in Consideration of Usability and Compatibility

  • Choi, Byoung Gil;Na, Young Woo;Jung, Jin Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Small-scale maps currently used are made by scanning and editing printed maps and its shortcoming is accumulated errors at the time of editing and low accuracy. TM projection method is used but its accuracy varies. In addition, small-scale maps are made without consideration of usability and compatibility with other scale maps. Therefore, it is necessary to suggest projection and coordinates system improvement methods in consideration of usability and compatibility between data. The results of this study reveal that in order to make the optimum small-scale map, projection that fits the purpose of map usage in each scale, coordinate system and neat line composition should be selected in consideration of interrelation and compatibility with other maps. Conic projection should be used to accurately illustrate the entire country, but considering usability and compatibility with other maps, traversing cylindrical projection should be used instead of conic projection. For coordinates system of the small-scale map, Universal Transverse Mercator (UTM-K) based on the World Geodetic System should be used instead of conventional longitude and latitude coordinate system or Transverse Mercator.

Development of Positioning System Based on Auto VRS-GPS Surveying

  • Choi, Hyun;Kim, Young-Jong;Park, Woo-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • There has been a need for replacing human labors with a robot in such dangerous and hard jobs of various construction sites. For that reason, many researches have been made about the high quality robot, which performs its duty instead of human labors. This study is about auto surveying system development based on VRS-GPS which enables autodriving in dangerous areas where it's difficult for humans to measure directly. This study is about the auto-surveying system development, based on VRS-GPS, which enables auto-drive in dangerous areas, whereas difficult for humans to measure directly. The GPS is made with GRXI and SHC250 controllers of the SOKKIA company. The auto surveying system is composed of DPS module, geomagnetism sensor, bluetooth, gimbals, IMU, etc to automatic drive via enter into a route of position. The developed auto surveying system has installed the carmeras for front and vertical axis as well as systems to grasp situation of surveying with smartphone in real time. The result from analysed RMSE of auto surveying system and VRS-GPS surveying is 0.0169m of X-axis and 0.0246m of Y-axis.

Study on Construction of Flood Hazard Information Support System based on Scenario (시나리오 기반 홍수위험정보지원시스템 구축 방안 연구)

  • Goo, Sin-Hoi;Jin, Kyeong-Hyeok;Cheong, Tae-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.389-393
    • /
    • 2010
  • The Objective of this study was to develop a system for visualizing inundation area by using 1-D numerical model analyzing damage information such as inundation area, facilities, land usages, population, building, loads. In this study, we have reviewed hydraulic models to select a flood model for simulation of discharges, water depths and velocities. The study area is Namhan River from Youngwol to Paldang Dam which had a flood damage on upper and below regions of Chungju Dam by a storm event in 2006. At the first, we developed the DB system base on GIS thematic map, ortho images, cadastral maps to analyze flood damages and support decisions making. Changing the boundary conditions such as discharge at the gauging stations, flood simulations were performed and then damages were extracted from the databases information support system based on 1-D numerical hydraulic model, it is expected to be able to analyze flood damages and support a decision making for reduce flood relate damages. In the future, the system developed in this study could be applied for flood forecasting system of small scaled streams.

  • PDF

Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique (드론을 이용한 홍수기 유량측정방법 개발(I) - 항공사진측량 기법 적용)

  • Lee, Tae Hee;Lim, Hyeokjin;Yun, Seong Hak;Kang, Jong Wan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1049-1057
    • /
    • 2020
  • This study aimed to develop a flow measurement method using drone in flood season. Measuring flow in all branches is difficult to conduct annually due to budget and labor limitation, safety and river works. Especially when heavy rain like storm comes, changes in stage-discharge relationship should be reviewed; however, it is usually impeded by the aforementioned issues. To solve the problem, it developed a simple measuring method with a minimum of labor and time. A numeric map and numeric orthophoto coordinate of South Korea are mostly based on Transverse Mercator Projection (TM) in accordance with rectangular coordinate system and use World Geodetic Reference System 1980 (GRS80) oval figure for conversion. Applying a concept of aerial photogrammetry, it located four visible Ground Control Points (GCP) near the river at Uijeongbu-si (Singok Bridge) and Yeongdong-gun (Youngdong 2nd Bridge) station and measured the coordinates using VRS DGPS. Hovering at a same level, drones took orthophoto of water surface at an interval of 3 seconds. It defined the pictures with GRS80 TM coordinate system, a rectangular coordinate system and then conducted an orthometric correction using GCP coordinates. According to X and Y coordinate analysis, it estimated the distance between the floating positions at 3 seconds-intervals and calculated the flow through the flow area according to the flow path. This study attested applicability of the flow measurement method using drone in flood season by applying the rectangular coordinate system based on the concept of aerial photogrammetry.

Development of Digital Map On-demand Updating System (수치지도 수시갱신 시스템 개발)

  • Lee, Jae-Kee;Lee, Dong-Ju;Jung, Sung-Heuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.537-546
    • /
    • 2008
  • The digital map has been updated in every five years in the past. However, it has been changed to make corrections and updated in every two years for metropolitan region and every four years for other regions since year 2008. Although, the correctness and reliability were decreased and updating work is being delayed due to the updating work in a lump. The period update spends a lot of money because this method uses aerial photogrammetry, and the digital map has the time gap between periods. Therefore, this study provides information necessary for digital map produced by the government and develops digital map production system based on objects which can be updated frequently in order to save state and local government budgets that double investment are generated to update digital map. In order to analyze usefulness of the developed system, subject area was selected and errors of updated data were analyzed. As the result of analysis, checked 66 errors were corrected and saved in the database.

A Study on Applicability Evaluation of digital Photogrammetry for Settlement Measurement of Soil Contaminated with Heavy Metals (중금속으로 오염된 지반의 침하계측을 위한 수치사진측량의 적용성 평가)

  • Han, Jung-Geun;Park, Jeong-Jun;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.85-93
    • /
    • 2020
  • This study describes the results of laboratory model test on settlement of soil contaminated with heavy metals, in order to evaluate the applicability of VMS to the measurement of gound settlements generated during the purification of contaminated soil. The measurement results for settlement of contaminated soil were compared using a 3D-Visual Monitoring System (VMS) based on digital photogrammetry and a total station. The test result showed that the settlement of the soil contaminated with heavy metals occurred a lot in the experimental condition in which the hydrophilic filter was applied. The minimum and maximum error ranges of VMS were calculated as ±0.36mm and ±0.87mm, respectively, and the error of VMS was satisfied in all experimental conditions. The average error rate of VMS was lower in the hydrophilic filter condition than in the hydrophobic filter condition. Therefore, it was evaluated that VMS can be applied to measure the settlement of contaminated soil.

Accuracy Estimation of Car Navigation using GPS CORS (GPS 상시관측점을 이용한 차량항법 정확도 평가)

  • 박운용;김희규;이재원;신상철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Nowadays it is necessary to manage the road system effectively because of the explosive increment of vehicle and goods. To resolve this problems through the fast upgrade of information about position and time of moving vehicle, the combined navigation system using GPS and complementary navigation system, i.e. INS, DR, etc. has been used. Although GPS is popular for the vehicle navigation system, this is not useful for the kinematic positioning of the vehicles in the urban canyon because of its few satellites. Therefore, this study deals with the kinematic positioning of the vehicles with GPS CORS to GPS navigation. For this, first the static single point positioning of GPS and GPS for reference station was performed to evaluate the accuracy of GPS positioning. Next, in the post-processed, the DGPS (Differential GPS) was performed for the kinematic positioning of the vehicles. So, it is expected that GPS CORS can be applicable to the control of traffic flow, the effective management of road system, and the development of ITS and it is regarded that the combined navigation system of vehicles with GPS, INS, and DR, etc. should be studied constantly.

  • PDF