• Title/Summary/Keyword: Photoelectronics

Search Result 23, Processing Time 0.016 seconds

Design of Koch Curve Microstrip Patch Antenna for Miniaturization Structure (소형화 구조를 위한 koch curve 마이크로스트립 패치 안테나 설계)

  • Kim, Sun-Woong;Kim, Gul-Bum;Yun, Jung-Hyun;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2823-2830
    • /
    • 2014
  • The antenna miniaturization technique involves the increment of the electrical length of the resonator the variation of the physical appearance of the antenna. The most typical method of size reduction is designing helical antenna, meander antenna, and fractal antenna. Size reduction using fractal antenna is proposed in this paper. Fractal koch curve has been etched in microstrip patch antenna to downsize the antenna at ISM (Industrial Scientific and Medical) frequency band of 2.45 GHz koch curve microstrip patch antenna ha FR4 epoxy substrate with dielectric constant 4.7, loss tangent equal to 0.02 and dielectric high of 1.6 mm. The designed antenna is fabricated using etching process. The fabricated antenna has return loss of 2.45 GHz, VSWR of 1.1492, and impedance is matched to $46{\Omega}$.

Effect of Diamond-Like Carbon Passivation on Physical and Electrical Properties of Plasma Polymer (플라즈마 폴리머의 물리적, 전기적 특성에서 다이아몬드상 탄소 패시베시션이 미치는 영향)

  • Park, Y.S.;Cho, S.J.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.193-198
    • /
    • 2012
  • In this study, we have fabricated the polymer insulator and diamond-like carbon (DLC) thin films by using plasma enhanced chemical vapor deposition methods. we fabricated the DLC films with various thicknesses as the passivation layer on plasma polymer and investigated the structural, physical, and electrical properties of DLC/plasma polymer films. The plasma polymer synthesized in this work had the low leakage current and low dielectric constant. The values of hardness and elastic modulus in DLC/plasma polymer films are increased, and the value of rms surface roughness is decreased, and contact angle value is increased with increasing DLC film thickness. In the electrical properties of DLC/plasma polymer, the value of the dielectric constant is increased, however the leakage current property of the DLC/plasma polymer is improved than that of plasma polymer film with increasing DLC film thickness.

Characteristics of the SrBi2Nb2O9 Thin Films Deposited by RF Magnetron Sputtering with Controlling of Bi Contents (RF마그네트론 스퍼터링 법에 의해 증착된 SrBi2Nb2O9 박막의 Bi 량의 조절에 따른 특성분석)

  • Lee, Jong-Han;Choi, Hoon-Sang;Sung, Hyun-Ju;Lim, Geun-Sik;Kwon, Young-Suk;Choi, In-Hoon;Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.962-966
    • /
    • 2002
  • The $SrBi_2$$Nb_2$$O_{9}$ (SBN) thin films were deposited with $SrNb_2$$O_{6}$ / (SNO) and $Bi_2$$O_3$ targets by co-sputtering method. For the growth of SBN thin films, we adopted the various power ratios of two targets; the power ratios of the SNO target to $Bi_2$$O_3$ target were 100 W : 20 W, 100 W : 25 W, and 100 W : 30 W during sputtering the SBN films. We found that the electrical properties of SBN films were greatly dependent on Bi content in films. The $Bi_2$Pt and $Bi_2$$O_3$ phase as second phases occurred at the films with excess Bi content greater than 2.4, resulting in poor ferroelectric properties. The best growth condition of the SBN films was obtained at the power ratio of 100 W : 25 W for the two targets. At this condition, the crystallinity and electrical properties of the films were improved at even low annealing temperature as $700^{\circ}C$ for 1h in oxygen ambient and the Sr, Bi and Nb component in the SBN films were about 0.9, 2.4, and 1.8 respectively. From the P-E and I-V curves for the specimen, the remnant polarization value ($2P_{r}$) of the SBN films was obtained about 6 $\mu$C/c $m^2$ at 250 kV/cm and the leakage current density of this thin film was $2.45$\times$10^{-7}$ $A/cm^2$ at an applied voltage of 3 V.V.