• Title/Summary/Keyword: Photoelastic Experiment

Search Result 47, Processing Time 0.026 seconds

Crack Growth Behavior in the Integrally Stiffened Plates(ll) - Experimental Evaluation of SIF- (일체형 보강판의 균열성장거동(II) - SIF의 실험해석 -)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.114-120
    • /
    • 1997
  • To assess the validity of the previously computed finite element analysis results, the photoelastic experiment was carried out to determine stress intensity factors for crack originating from thin section of integrally stiffened plates having discontinuous thickness interface. The stress intensity factors were deter- mined by using linear slope method of photoelastic data. Results are presented as variable thickness geometry factor. $F_{IV}$ , for various crack lengths and thickness ratios. The experimental values of F/ sub IV/are compared with 3-D finite element analysis results. The correlation between experimental values and analysis results is resonably good.

  • PDF

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

Fringe Analysis around an Inclined Crack Tip of Finite-Width Plate under Tensile Load by Photoelastic Phase-Shifting Method (광탄성 위상이동법을 이용한 인장판 경사균열 선단주위의 프린지 해석)

  • Li, Weizheng;Baek, Tae-Hyun;Hong, Dong-Pyo;Lee, Byung-Hee;Seo, Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Photoelasticity is a technique of experimental methods and has been widely used in various domains of engineering to determine the stress distribution of structures. Without complicated mathematical formulation, this technique can conveniently provide a fairly accurate whole-field stress analysis for a mechanical structure. Here, stress distribution around an inclined crack tip of finite-width plate is studied by 8-step phase-shifting method. This method is a kind of photoelastic phase-shifting techniques and can be used for the determination of the phase values of isochromatics and isoclinics. According to stress-optic law, the stress distribution could be obtained from fringe patterns. The results obtained by polariscope arrangement combined with 8-step method and ABAQUS FEM simulations are compared with each other. Good agreement between them shows that 8-step phase-shifting method is reliable and can be used for determination of stress by experiment.

Stress analysis of split ring (분할링에 관한 응력해석)

  • 이영식;조선휘;남준우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.71-77
    • /
    • 1984
  • Stress analysis of split ring with four different radius ratios under the compressive load is made by the photoelastic experiment and the numerical analysis through the FEM. The results of the two methods agreed well. Above results are also compared with those of the theoretical formula in order to confirm the range in which the formula of the curved bar is applied in connection with the radius ratio. The results of the two methods agreed well with those of the formula for the radius ratio, 3/2 and 9/7 within small errors of around 7% and 5% respectively.

  • PDF

A study on the stress analysis for rake face of a tool with crack in cutting process (적삭중인 공구의 경사면상에 crack을 갖는 경우의 응력해석에 관한 연구)

  • 김원익;남준우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-75
    • /
    • 1987
  • The determination of stress distributions on the rake face of tool are important to understand the mechanism of metal cutting. For this reason, many researchers have been payed much effort to analyize machining stress distribution on the rake face. The author's photoelastic experiment has shown that the stress distributions on a rake face can be obtained photoelastically by using a specially designed tool made of epoxy resin plate, and also, Stress Intensity Factors $k_{I}$, $k_{II}$ and Crack Extension Angle can be deter mined by using Linear Elastic Fracture Mechanics.ics..

  • PDF

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Photoelastic stress analysis of the mandibular unilateral free-end removable partial dentures according to the design (하악 편측 유리단 가철성 국소의치의 설계에 따른 광탄성 응력 분석)

  • Park, Cheol-Woo;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.206-214
    • /
    • 2009
  • Statement of problem: There are common clinical cases in which the mandibular first and second molars are missing unilaterally. Purpose: This study was designed to compare and evaluate the magnitude and distribution of stress produced by four kinds of mandibular unilateral free-end removable partial dentures that could be applied clinically in Kennedy class II cases. Material and methods: Four unilateral free-end removable partial dentures using clasp, Konus crown, resilient attachment, and flexible resin were fabricated on the photoelastic models of the Kennedy class II cases. The vertical load of 6㎏ was applied on the central fossa of the first molar of every removable partial denture in the stress freezing furnace and the photoelastic models were frozen according to the stress freezing cycle. After these models were sliced mesio-distally to a thickness of 6mm, the photoelastic isochromatic white and black lines of the sliced specimens were examined with the transparent photoelastic experiment device and photographs were taken with a digital camera. The fringe order numbers at eight measuring points in the photograph were measured with the naked eye. Results: The maximum fringe order number of each sliced specimen and the fringe order number at the residual ridge just below the loading point were in the decreasing order of the unilateral removable partial dentures using flexible resin followed by clasp, resilient attachment, and Konus crown. The fringe order number at the root apex of the second premolar was in the decreasing order of the unilateral removable partial dentures using clasp followed by flexible resin, Konus crown, and resilient attachment. Conclusion: The removable partial denture using Konus crown showed the most equalized stress distribution to the supporting alveolar bone of abutment teeth and residual ridge under the vertical loads. The removable partial denture using flexible resin can be applied to the case that has a better state of residual ridge than abutment teeth.

THREE DIMENSIONAL PHOTOELASTIC ANALYSIS OF STRESS OF EDENTULOUS MANDIBULE ACCORDING TO VARIOUS RIDGE SHAPES AND ARTIFICIAL TEETH SIZES (잔존치조제 형태 및 총의치 인공치 크기가 무치하악 응력발생에 미치는 영향에 관한 3차원적 광탄성응력분석)

  • Choi Chang-Deog;Yoo Kwong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.457-478
    • /
    • 1992
  • Electrical resistance strain gauges, brittle-coatings, Moir'e fringe analysis, photoelasticity methods, etc, have been employed in the study of stress analysis and three-dimensional photoelasticity method used in this experiment. The author fabricated a total of 24 samples of maxillary and mandibular edentulous ridges with normal and sharp shapes using epoxy resin, one of the photoelastic materials. In addition, complete denture made from artificial resin teeth in other twoo sizes, large and medium size, were affixed to the specimens and attached to an articulator. The following results were attained by cutting 9 slice specimens into 6mm thick portions, in accordance with the three dimensional photoelastic stress freezing method, to analyze stress distribution status under specific static loading in the central, lateral and protrusive occlusions of the shape of edentulous ridge. 1. In the case of central occlusion, when complete resin artificial teeth in large and medium sizes were used on normal and sharp alveolar ridges, high stress distribution was broadly shown in the labio-buccal sides, and low and concentrated in the lingual sides, in all cases. Generally, the highest stresses were shown at the top of the alveolus, or at 2mm below the top of the alveolus, particularly in the specimen 2, 3, and stresses were more or less the same in the symmetrical right and left sides. 2. In the case of lateral occlusion, when the same load was applied, high stresses were shown broadly at the working sides in both the labio-buccal and lingual sides, and low and concentrated at the balanced sides. The highest stresses were shown in the top of the alveolus on the working sides in specimen 2 portion, and the lowest stresses at the balanced sides in specimen 6, slightly higher stresses were shown at retromolar parts in the balanced sides. 3. In the case of protrusive occlusion, high stresses were broadly shown at the labio-buccal sides, and slightly higher stresses at the top 2, 4, and 6mm parts of the alveolus with concentration. The highest stresses were shown in specimen No. 5 and the lowes stresses in specimen 1, 9 and stresses were more of less the same at the symmetrical right and left sides.

  • PDF

A study on the Teflon crack Molding Method (테프론 균열 주형법 開發에 관한 硏究)

  • 최상인;최선호;황재석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.945-952
    • /
    • 1987
  • In this paper, Crack molding method called "Teflon crack Molding Method" is developed. With help of this method, we can mold a crack which is very similar to the natural crack, which has the tip radius of about 20.mu. the vertical and horizontal quality of crack excellent. In addition to these, by using this method in photoelastic experiment we can obtain the clear crack tip location and Isochromatic fringe pattern boundary, therefore the precise in the experimental data can be improved. improved.

Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment (광탄성실험에 의한 함수구배 재료 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF