• Title/Summary/Keyword: Photocurable resin

Search Result 24, Processing Time 0.019 seconds

A Study on Hydrophobic Surface Treatment for Microfluidic System Fabrication Based on SLA 3D Printing Method (SLA 3D 프린팅 방식 기반의 미세 유체 시스템 제작을 위한 소수성 표면 처리 연구)

  • Jae Uk Heo;Seo Jun Bae;Do Jin Im
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.105-111
    • /
    • 2024
  • The SLA (Stereolithography Apparatus) method is a type of 3D printing technique predicated on the transformation of liquid photocurable resin into a solid form through UV laser exposure, and its application is increasing in various fields. In this study, we conducted research to enhance the hydrophobicity and transparency of SLA 3D printing surfaces for microfluidic system production. The enhancement of surface hydrophobicity in SLA outputs was attainable through the application of hydrophobic coating methods, but the coating durability under different conditions varied depending on the type of hydrophobic coating. Additionally, to simultaneously achieve the required transparency and hydrophobic properties for the fabrication of microfluidic systems, we applied hydrophobic coatings to the proposed transparency enhancement method from prior research and compared the changes in contact angles. Teflon coating was proposed as a suitable hydrophobic coating method for the fabrication of microfluidic systems, given its excellent transparency and high coating durability in various environmental conditions, in comparison to titanium dioxide coating. Finally, we produced an Electrophoresis of Charged Droplet (ECD) chip, one of the digital microfluidics systems, using SLA 3D printing with the proposed Teflon coating method (Fluoropel 800). Droplet manipulation was successfully demonstrated with the fabricated chip, confirming the potential application of SLA 3D printing technology in the production of microfluidic systems.

A Study on the reduction of surface roughness by analyzing the thickness of photocurable sculpture (광조형물의 패턴두께에 따른 표면 거칠기 저감을 위한 공정연구)

  • Kim, Young-Su;Yang, Hyoung-Chan;Kim, Go-Beom;Dang, Hyun-Woo;Doh, Yang-Hoi;Choi, Kyung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • In this paper, we developed a 3D printing system using a photo-curing resin in order to reduce the surface roughness of a sculpture produced with the 3D printer. Using the pattern of the resulting variable thickness, that gave rise to a stepped shape, and the area error of the photo-curable sculpture, a study was carried out for the process to reduce the surface roughness. At a given value of stage velocity (40~70 mm/s) and output air pneumatic pressure (20~60 kPa), the minimum pattern thickness of the pattern was achieved $65{\mu}m$ and the maximum pattern thickness of up to $175{\mu}m$. To increases the pattern resolution to about $40{\mu}m$, the process conditions should be optimized. 3D surface Nano profiler was used to find the surface roughness of the sculpture that was measured to be minimum $4.7{\mu}m$ and maximum $8.7{\mu}m$. The maximum surface roughness was reduced about $1.2{\mu}m$ for the maximum thickness of the pattern. In addition, a FDM was used to fabricate the same sculpture and its surface roughness measurements were also taken for comparison with the one fabricated using photo-curing. Same process conditions were used for both fabrication setups in order to perform the comparison efficiently. The surface roughness of the photo-curable sculpture is $5.5{\mu}m$ lower than the sculpture fabricated using FDM. A certain circuit patterns was formed on the laminated surface of the photo-curable sculpture while there was no stable pattern on the laminated surface of the FDM based sculpture the other hand.

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.

Fabrication of complete denture using digital technology in patient with mandibular deviation: a case report (하악 편위 환자에서 디지털 방식을 이용한 총의치 제작 증례)

  • Lee, Eunsu;Park, Juyoung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • Recently, digital technology and computer-aided design/computer-aided manufacturing (CAD/CAM) environment have changed the clinician treatment method in the fabrication of dentures. The denture manufacturing method with CAD/CAM technology simplifies the treatment and laboratory process to reduce the occurrence of errors and provides clinical efficiency and convenience. In this case, complete dentures were fabricated using stereolithography (SLA)-based 3D printing in patient with mandibular deviation. Recording base were produced in a digital model obtained with an intraoral scanner, and after recording a jaw relation in the occlusal rim, a definitive impression was obtained with polyvinyl siloxane impression material. In addition, facial scan data with occlusal rim was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a Food and Drug Administration (FDA)-approved liquid photocurable resin. The denture showed adequate retention, support and stability, and results were satisfied functionally and aesthetically.