• Title/Summary/Keyword: Photoconductor materials

Search Result 18, Processing Time 0.023 seconds

Charge-carrier Transport Properties of Organic Photoconductor by Photo-isomerization of Liquid Crystal with Azo Group (Azo기를 가지는 액정의 광 이성화에 따른 유기 광전도체의 carrier 수송 특성)

  • Lee, Bong;Sung, Jung-Hee;Moon, Chang-Kwon
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.473-477
    • /
    • 1999
  • Xerographic properties of double-layer photoconductor doped with 4-butyl-4'-methoxyazobenzene (BMAB) as charge-carrier transport material were investigated. BMAB can undergo reversible trans-cis isomerization by light with appropriate wavelength. In the results of measured surface voltage properties for photoconductor doped with BMAB, TNF: BMAB(4-wt%) sample with trans form showed the lowest dark decay, the lowest residual voltage, and the highest sensitivity among cis form. The trans isomer of BMAB has ordering orientation because the molecule possesses a rodlike shape, while the cis isomer has random orientation due to its bent shape. Therefore the molecular arrangement of trans form enhanced charge-carrier transport mobility.

  • PDF

Soaking method & Particle In Binder method를 적용한 Photoconductor materials의 제작방식에 따른 X-ray Detector film 제작 및 전기적 특성평가

  • Lee, Yeong-Gyu;Yun, Min-Seok;Kim, Min-U;Kim, Yun-Seok;Jeong, Suk-Hui;Jeon, Seung-Pyo;Park, Geun-U;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.72-72
    • /
    • 2009
  • 본 연구에서는 Photoconductor materials 기반의 평판형 X-ray Detector film 제작에 관한 연구를 수행하였다. 기존의 광도전성 물질로 사용되어 오던 비정질 셀레늄(Amorphous seleinum; a-Se) 기반의 디지털 방사선 검출기 보다 높은 신호 및 동작 특성을 가지는 Mercury Iodide(HgI2)와 열적, 전기적 특성이 안정적이며, 소자의 동작특성이 우수한 Lead Oxide(PbO) 기반의 X-ray Detector film의 개발에 있어서 각각 HgI2 및 PbO 두 물질 층을 적정비율에 맞추어 제작함으로써 최적의 X-ray Detector를 구현하고자 하였다. 이는 빠른 영상획득을 통해 기존의 방식이 가지는 문제점을 해결하고 의료기기 디지털화를 구현할 수 있는 차세대 시스템을 개발하고자 하는 것이다. 본 연구에서는 기존의 진공증착법의 두꺼운 대면적 필름의 제조가 어려운 문제점을 해결하고자 Particle In Binder method(PIB) 방법을 이용하여 $3"{\times}3"$사이즈의 두께 $200{\mu}m$의 다결정의 Photoconductor 필름을 제조하여 전기적 특성을 평가하였다. 제작된 필름의 전기적 특성을 dark current, X-선 sensitivity와 SNR(Signal to -Noise Rate) 등을 측정하여 정량적으로 평가 하였다. 기준 실험으로 진행한 DG 2.1 바인더를 사용한 single-HgI2 층에서 보다 높은 sensitivity 값을 보였지만 높은 dark current로 인해 SNR이 떨어지는 결과를 볼 수 있었다. 본 연구에서 제시하는 두 Photoconductor material의 Soaking method를 이용한 실험에서는 single-HgI2에 해당하는 높은 sensitivity 및 저감된 dark current로 인해 높은 SNR 값을 획득하였다. 하지만 습도와 같은 주변 환경에 의한 재현성 문제로 인한 신호값의 불안정성에 대한 문제점도 남아 있으므로, 차후 최적화된 material 제작 공정을 위한 연구가 꾸준히 진행 되어져야 할 것이다.

  • PDF

Charge-Carrier Transport Properties and Fluorescence Behaviors Depending on Charge Transport Complex of Organic Photoconductor Containing Liquid Crystal (액정을 함유하는 유기 광도점체의 전하 수송착체에 의한 Charge-Carrier수송 특성과 형광거동)

  • Lee, Bong; Jung, Sung-Young;Moon, Doo-Dyung
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.719-727
    • /
    • 2001
  • Recently it was found that the charge carrier transport properties are significantly enhanced due to effective intermolecular $\pi$-orbital overlapping and low disorder of hopping sites caused by self-organization of liquid crystal molecules. In this study, the xerographic properties of a double-layer photoconductor doped with nematic liquid crystal, 4-pentyl-4'-cyanoterphenyl (5CT), as a charge-carrier transport material to enhance the charge-tarrier mobility were investigated. From the results of measured surface voltage properties for the photoconductor doped with various concentrations of liquid crystal, 5CT, the initial voltage was found to increase with the concentration of 5CT and the dark decay decreased with the concentration of 5CT. The highest sensitivity was obtained at a specific concentration, 40wt% 5CT. The fluorescence behavior of the carrier transport layer (CTL) was also investigated. It was found that the charge-carrier transport properties of the organic photoconductor depend on the charge-carrier transport properties of the complex. The TNF : 5CT (40 wt%) and OXD : 5CT (40 wt%)samples showed the highest sensitivity because the greatest charge transport complex was termed between the charge-carrier transport materials in these samples.

  • PDF

The Feasibility Study of photoconductor materials for the use of a dosimeter in Radiotherapy (광도전체 물질의 치료 방사선 선량계 적용을 위한 가능성 연구)

  • Jang, Giwon;Shin, Jungwook;Oh, Kyungmin;Park, Sungkwang;Kim, Jinyoung;Park, Jikoon;Nam, Sanghee
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.81-84
    • /
    • 2013
  • The use of the dosimetry have been increasingly recognized as high radiation energy and radiation treatment planning(RTP) have rapidly developed in radiotherapy. There are many types of detectors for the dosimetry such as ionization chamber, film, TLD, diode, and etc. Among such detectors, the diode detector uses a photoconductor materials that generate electrical signals by the incident radiation energy. Though many research groups are recently interested in such materials, there is few experimental results except for silicon in the radiation therapy field. In this study, the feasibility of photoconductor materials was verified as a dosimeter through the evaluation of response properties at a high radiation energy. For the fabricated detectors based on $HgI_2$ and $PbI_2$, reproducibility, linearity, and pulse-rate response were analyzed. Such evaluations are essential factors for the use of dosimeter. From results, linearity and reproducibility of the fabricated $HgI_2$ detector indicated about 7% error. The fabricated $PbI_2$ detector showed 1.7% error in linearity, and 12.2% error in reproducibility.

The optical characteristics study of sandwich structure based liquid crystal for the radiation detector application (방사선 검출기 적용을 위한 액정 기반 다층 구조의 광 특성 평가)

  • Shin, Jung-Wook;Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Yul;Kim, Jin-Young;Lee, Gun-Hwan;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.390-392
    • /
    • 2005
  • The digital radiation detectors are used clinically by diagnostic apparatus. However the digital radiation detector are some problem like high operating voltage, light blurring, low conversion efficiency, low fill factor, etc. Thus we propose a new radiation detector that the photoconductor layer and liquid crystal layer are coupled in sandwich structure. X-ray absorption in the photoconductor layer controls the state of the liquid crystal via creation of charge carrier and the light modulation of liquid crystal make image formation. The advantage of the new radiation detector is that high resolution image is acquired and the signal amplification is possible by external visible light source. In this study, we study the optical properties and electrical properties of the new radiation detector to irradiate X-ray. The Mercury Iodide($HgI_2$) was used by photoconductor material, and the aluminum is used by reflective layer. The thickness of Mercury Iodide is about $200{\mu}m$, the operating voltage of the liquid crystal is 1.5~5V. The electrical properties of Mercury Iodide was measured, and the transmission efficiency of liquid crystal was measured by modulation potential.

  • PDF

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

Opto-electrical properties for a HgCdTe epilayers grown by hot wall epitaxy (Hot wall epitaxy에 의해 성장된 HgCdTe 에피레이어의 광전기적특성)

  • 홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.152-152
    • /
    • 2003
  • Hg$\sub$l-x/Cd$\sub$x/Te (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of 590$^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was 5 $\mu\textrm{m}$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111) /GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment The photoconductor characterization for the epilayers was also measured The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out

  • PDF

Printability of an Aqueous Gravure Ink for Polyolefin (Polyolefin용 수성 Gravure Ink의 인쇄작성)

  • 김종원
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.1.1-11
    • /
    • 1994
  • The photosensitive properties and carrier transport in the organic photoconductor with the carrier transport layers(CTL) of polymer matrix doped with two carrier transport materials above carrier generation layer(CGL) containing oxotitanium phthalocyanine (TiOPc) were investigated. The CGL of TiOPc dispersed in poly(vinylbutyral) was formed as thickness of 0.1${\mu}{\textrm}{m}$and the carrier transport layer was prepared by coating polycarbonate and polyester doped with oxadiazoly(OXD), polyvinylcarbazole (PVK), trinitro fluorenone(TNF) as thickness of 10~15${\mu}{\textrm}{m}$, respectively. We have measured half decay exposure,sensitivity and xerographic gain from the photo-induced discharge curve(PIDC). In this work, it was found that the characteristics of carrier transport were mainly caused by the ionization potential difference of constitutive materials in molecularly doped polymer.

  • PDF

Characterization of the a-Se Film for Phosphor based X-ray light Modulator (형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성)

  • Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Youl;Shin, Jung-Wook;Lee, Kun-Hwan;Mun, Chi-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.