• Title/Summary/Keyword: Photochemical reactions

Search Result 137, Processing Time 0.027 seconds

Photochemical Approach to the Preparation of Lariat Crown Ethers Containing Peptide Sidearms

  • Cho, Dae-Won;Quan, Chunsheng;Park, Hea-Jung;Yoon, Ung-Chan;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.503-509
    • /
    • 2011
  • New types of lariat type crown ethers containing peptide sidearms were prepared by using a novel strategy employing single electron transfer (SET)-induced photocyclization reactions of $\alpha$-silylether terminated phthalimides. Reactions of chiral substrates in this series produced diastereomeric mixtures of crown ether products as a result of the formation of new stereogenic center generation in the photocyclization process.

Single Electron Transfer Induced Photoaddition Reactions of Silyl Enol Ether to N-Methylphthalimide

  • Oh, Sun-Wha;Kim, Jin-Young;Cho, Dae-Won;Choi, Jung-Hei;Yoon, Ung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.629-634
    • /
    • 2007
  • Photochemical reactions of N-methylphthalimide with silyl enol ethers have been explored. Irradiations of phthalimide (1) and cyclic silyl enol ethers (5a-b) are observed to promote formation of photoreduced phthalimides and photoaddition products by sequential SET-desilylation pathways. The photoreaction of phthalimide (1) and acyclic silyl enol ethers (5c-d) leads to produce oxetanes which arise by competitive single electron transfer (SET) and classical 2+2 photocycloaddition (Parteno-Buchi reaction) pathways.

Airborne Measurements of Ozone and Its Precursors over Yeosu-Gwangyang Industrial Areas in the Southern Coast of Korea

  • Kim, So-Young;Seo, Seok-Jun;Park, Hyun-Ju;Son, Jung-Seok;Park, Ji-Hoon;Kim, Jong-Choon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.139-151
    • /
    • 2013
  • The purpose of this study is to understand distributional characteristics in the atmospheric concentrations of $O_3$ and its precursors based on data taken at the southern Korean coast. The average $O_3$ concentration in the high altitude was found to range from 32.3 to 90.8 ppb with a maximum concentration of 132 ppb. The ambient $O_3$ concentration was high at altitudes of 1000 m and 500 m above the southern sea near Gwangyang Bay and an industrial area containing emission sources. The daily mean concentrations of $NO_y$ and CO were 6.7-24.2 ppb and 0.152-0.487 ppm, respectively. During the aerial measurement period, the highest mean concentration of $O_3$ was observed on June 1. The aerial measurement results showed that the maximum ozone concentration was observed to be 132 ppb in the high altitude the southernmost part of Yeosu. The measurement of vertical wind fields in the air indicated that $O_3$ formed in the southernmost part of Yeosu was transported by strong southwesterly winds to the northeast of Gwangyang Bay. This led to a ground $O_3$ concentration of over 100 ppb in Jinju, the northeastern part of Gwangyang Bay. On August 9, when the maximum $O_3$ concentration was 50 ppb, the measurement results showed that $O_3$ concentrations were relatively low compared to other days. In particular, low $NO_2$ and TVOC concentrations were observed, both of which serve to form $O_3$ in photochemical reactions.

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

A Study on the Characteristics of Flow and Reactive Pollutants' Dispersion in Step-up Street Canyons Using a CFD Model (CFD 모델을 이용한 체승 도시협곡의 흐름과 반응성 대기오염물질 확산 특성 연구)

  • Kim, Eun-Ryoung;Park, Rokjin J.;Lee, Dae-Geun;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • In this study, street canyons with a higher downwind building (so called, step-up street canyons) are considered for understanding characteristics of flow and reactive pollutants' dispersion as a basic step to understand the characteristics in wider urban areas. This study used a CFD_NIMR_SNU coupled to a chemistry module just including simple $NO_X-O_3$ photochemical reactions. First, flow characteristics are analyzed in step-up street canyons with four aspect ratios (0.33, 0.47, 0.6, 0.73) defined as ratios of upwind building heights to downwind building height. The CFD_NIMR_SNU reproduced very well the main features (that is, vortices in the street canyons) which appeared in the wind-tunnel experiment. Wind speed within the street canyons became weak as the aspect ratio increased, because volume of flow incoming over the upwind building decreased. For each step-up street canyon, chemistry transport model was integrated up to 3600 s with the time step of 0.5 s. The distribution patterns of $NO_X$ and $O_3$ were largely dependent on the mean flow patterns, however, $NO_X$ and $O_3$ concentrations were partly affected by photochemical reactions. $O_3$ concentration near the upwind lower region of the street canyons was much lower than background concentration, because there was much reduction in $O_3$ concentration due to NO titration there. Total amount of $NO_X$ in the street canyons increased with the aspect ratio, resulting from the decrease of mean wind intensity.

The PM2.5 Emission Source Contribution Analysis using The PMF Model in Urban Area (PMF 모델을 이용한 도심지역 PM2.5 오염원 기여도 분석)

  • Koo, Tai-Wan;Hong, Min-Sun;Moon, Su-Ho;Kim, Ho-Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.905-914
    • /
    • 2019
  • In this study, The PMF model was used to identify pollutant sources and their contribution to pollution sources of $PM_{2.5}$. The contribution of A city to each source was 19.8% for Secondary Sulfate, followed by Mobile 19.5%, Industry 16.0%, Biomass Buring 14.1%, Secondary Nitrate 14.1%, Oil Combustion 11.6%, Aged Sea Salt 2.6%, Soil 2.5% and so on. Sulfate and Ammonium concentrations were the highest contributing sources in the source profile, which was analyzed to be Secondary Aerosols produced by Photochemical Reactions of gaseous precursors (SOx and ammonia gas) in the atmosphere.

Chemistry of persulfates for the oxidation of organic contaminants in water

  • Lee, Changha;Kim, Hak-Hyeon;Park, Noh-Back
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.405-419
    • /
    • 2018
  • Persulfates (i.e., peroxymonosulfate and peroxydisulfate) are capable of oxidizing a wide range of organic compounds via direct reactions, as well as by indirect reactions by the radical intermediates. In aqueous solution, persulfates undergo self-decomposition, which is accelerated by thermal, photochemical and metal-catalyzed methods, which usually involve the generation of various radical species. The chemistry of persulfates has been studied since the early twentieth century. However, its environmental application has recently gained attention, as persulfates show promise in in situ chemical oxidation (ISCO) for soil and groundwater remediation. Persulfates are known to have both reactivity and persistence in the subsurface, which can provide advantages over other oxidants inclined toward either of the two properties. Besides the ISCO applications, recent studies have shown that the persulfate oxidation also has the potential for wastewater treatment and disinfection. This article reviews the chemistry regarding the hydrolysis, photolysis and catalysis of persulfates and the reactions of persulfates with organic compounds in aqueous solution. This article is intended to provide insight into interpreting the behaviors of the contaminant oxidation by persulfates, as well as developing new persulfate-based oxidation technologies.

The Characterization of Surface Ozone Concentrations in Seoul, Koera

  • Heo, Jeong-Sook;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.129-142
    • /
    • 2002
  • This paper provides a long-term perspective for ozone concentrations at 20 national air quality monitoring sites in Seoul from 1989 to 1998, which were managed by the Korean Ministry of Environment. Ozone episodes occurred more frequently in the east areas (Bangi, Guui, Seongsu, and Ssangmun) than in the west area (Guro and Oryu). When an ozone episode happened, hourly ozone concentrations over 80 ppb continued for an average of 4.0 hours at all sites. Annual variations in daily mean and maximum oBone concentrations showed broadly consistent upward trends at Ssangmun and Gwanaksan. Monthly mean ozone concentrations were the highest from May to June and the 99$^{th}$ and 95$^{th}$ percentile levels appeared higher during June, July, and August. The diurnal patterns of hourly mean ozone levels in urban areas showed typical photochemical formation and destruction, while the flat diurnal shape before 1996 at Gwanaksan indicated few significant photochemical reactions due to a lack of precursors of ozone. The occurrence of ozone over 80 ppb was ascribed to meteorological conditions such as high temperature, strong solar radiation, low relative humidity, and low wind speed with winds most frequently in a westerly direction.

A Study on the VOCs Emission Characteristics of RV and MPV (RV차량 및 소형승합차량의 휘발성유기화합물 배출특성 연구)

  • Mun, Sunhee;Hong, Heekyoung;Kim, Sunmoon;Seo, Seokjun;Jung, Sungwoon;Chung, Taekho;Hong, Youdeog;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • Volatile organic compounds (VOCs) are well known as ozone precursors from photochemical reactions and contribute to the formation of photochemical smog which pose health hazards. Also, some of these compounds directly affect the human health due to their toxicity such as benzene. In this study, NMVOCs composition in exhaust gas from recreational vehicle (RV) and (MPV) were characterized using a chassis dynamometer. The results for NMVOCs have reported that alkanes emission was higher than alkenes, aromatics and cycloalkanes due to reactive of diesel oxidation catalysts. The NMVOCs composition according to carbon number was highly distributed between C3 and C6~C8. During the engine cold start condition, NMVOCs emission was higher compared to the engine hot start condition due to the increased catalytic activity. The NMVOCs emission with DPF increased compared to that without DPF. The results of this study will be provide to calculate VOCs emissions from mobile source.

Sensitivity of Ozone Concentrations to Initial Concentrations Applying the Carbon Bond Mechanism IV

  • Lee, Hwa-Woon;Kim, Heon-Sook;Oh, Eun-Joo;Kim, Yeon-Hee
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1159-1165
    • /
    • 2003
  • The Carbon Bond Mechanism IV has been developed for use in urban- and regional-scale oxidant models. The photochemical mechanism, CBM4, contains extensive improvements to earlier carbon bond mechanisms in the chemical representations of aromatics, biogenic hydrocarbons, peroxyacetyl nitartes, and formaldehyde. Ozone is produced mainly by nitrogen oxides and hydrocarbon. By altering the initial concentrations of the mechanism, an analysis of the sensitivity of ozone concentrations to VOC/NO$\_$x/ ratios and VOC composition is conducted in this one-dimensional mechanism. Note that it is considered a chemical mechanism in order to understand the photochemical reactions within this mechanism. It analyzed the results of these simulations by applying a NO$\_$x/-sensitive and a VOC-sensitive regime. These sensitivity regimes are changed to match the relative contribution of VOC and NO$\_$x/ concentrations to ozone production in simulations of two sets.