• Title/Summary/Keyword: Photo-production

Search Result 241, Processing Time 0.03 seconds

Development of Gas Production Measurement System by Bubble Counting during Fermentation (기포계수식 발효가스 발생량 계측시스템의 개발)

  • Lee, Young-Jin;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.195-198
    • /
    • 1994
  • A bubble counter was designed and fabricated for the measurement of gas production rate on the basis of number of bubbles produced from yeast fermentor. The sensor was consisted of bubble forming device and electronic signal processing circuitry. The bubble forming device was built with bubble collector and liquid cell to form uniform size of bubble. Bubbles were counted by pulses formed by photo-interrupter circuitry having 8-bit binary latch counter. The gas production rate curves on the basis of bubble counted showed a good agreement to that of growth curves obtained by the optical measurement method. The sensor was succesfully applied to monitoring of the nutrient utilization test with glucose and galactose media.

  • PDF

A Newly Designed a TiO2-Loaded Spherical ZnS Nano/Micro-Composites for High Hydrogen Production from Methanol/Water Solution Photo-Splitting

  • Kim, Ji-Eun;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2133-2139
    • /
    • 2012
  • A new system using $TiO_2$ (nano-sized, band-gap 3.14 eV)-impregnated spherical ZnS (micro-sized, band-gap 2.73 eV) nano/micro-composites (Ti 0.001, 0.005, 0.01, and 0.05 mol %/ZnS) was developed to enhance the production of hydrogen from methanol/water splitting. The ZnS particles in a spherical morphology with a diameter of about 2-4 mm which can absorb around 455 nm were prepared by hydrothermal method. This material was used as a photocatalyst with loading by nano-sized $TiO_2$ (20-30 nm) for hydrogen production. The evolution of $H_2$ from methanol/water (1:1) photo splitting over the $TiO_2$/ZnS composite in the liquid system was enhanced, compared with that over pure $TiO_2$ and ZnS. In particular, 1.2 mmol of $H_2$ gas was produced after 12 h when 0.005 mol % $TiO_2$/ZnS nano/micro-composite was used. On the basis of cyclic voltammeter (CV) and UV-visible spectrums results, the high photoactivity was attributed to the larger band gap and the lower LUMO in the $TiO_2$/ZnS composite, due to the decreased recombination between the excited electrons and holes.

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.

A Study of Mastless Pattern Fabrication using Stereolithography (광조형을 이용한 마스크리스 패턴형성에 관한 연구)

  • 정영대;조인호;손재혁;임용관;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.503-507
    • /
    • 2002
  • Mask manufacturing is a high COC and COO process in developing of semiconductor devices, because of the mass production tool with high resolution. Direct writing has been thought to be one of the patterning method to cope with development or small-lot production of the device. This study focused on the development of the direct, mastless patterning process using stereolithography tool for the easy and convenient application to micro and miso scale products. Experiments are utilized by three dimensional CAD/CAM as a mask and photo-curable resin as a photo-resist in a conventional stereo-lithography apparatus. Results show that the resolution of the pattern was achieved about 300 micron because of complexity of SLA apparatus settings, inspite of 100 micro of inherent resolution. This paper concludes that photo resist and laser spot diameter should be adjusted to get finer patterns and the proposed method is significantly feasible to mastless and low cost patterning with micro and miso scale.

  • PDF

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

A Case Study about Koreanese-Japanese Students' Convergence Cartoon Using Photovoice

  • Kwon, Kyung-min
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.77-85
    • /
    • 2022
  • Today's universities have a keen interest in educational reform. The issue of population decline in college-age due to population decline is not new. Universities have been developing quantitatively for a long time and are now considering ways to survive rather than qualitative growth. Since the sharp decline in the school-age population due to the population decline has no clear solution immediately, universities are overcoming this crisis by creating many alternatives. Attracting international students is one of them. In this study, the effectiveness of photovoice was examined through the analysis of the case of the Korean-Japanese convergence cartoon class. The photo-voice method has sufficient potential as a teaching method for foreign convergence classes and can be expected to play a role as a teaching method suitable for students participating in convergence classes with different social, cultural, and linguistic backgrounds. In particular, in the convergence class, since participating students generate research materials through photo production, it can be a tool for inner exploration necessary for webtoon production and a tool for narrative inquiry for storytelling. It is expected that expanding the understanding and use of photo voice will have the methodological value of convergence classes. In addition, the teaching method using photo voice produced in the composition of photos and stories is likely to be used as an appropriate tool for convergence classes for students with different social, cultural, and linguistic backgrounds.

Biological Hydrogen Production (바이오기술 이용 수소제조)

  • Kim Mi-Sun;Oh You-Kwan
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.118-126
    • /
    • 2006
  • This publication provides an overview of the state-of-the-art and perspective of biological $H_2$ production from water and/or organic substances. The biological $H_2$ production processes, being explored in fundamental and applied researches, are direct and indirect biophotolysis from water, photo-fermentation, dark anaerobic fermentation and in vitro $H_2$ production. The development of biological $H_2$ production technology, as an energy carrier, started at the late 1940's in the lab-scale. Now it has a high priority in the world, especially USA, Japan, EU and Korea.

Optimal Condition of Operation Parameter for Livestock Wastewater Treatment using Photo-Fenton Process (PHOTO-FENTON 공정을 이용한 축산폐수처리시 운전인자의 최적조건)

  • Park, Jae-Hong;Chang, Soon-Woong;Cho, Il-Hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.284-288
    • /
    • 2005
  • In this study, photochemical advanced oxidation processes (AOPs) utilizing the Photo Fenton reaction ($Fe^{2+}+H_2O_2+UV$) were investigated in lab-scale experiments for the treatment of livestock wastewater. For the experimets, the livestock wastewater was pretreated by coagulation with $3,000mg/L\;FeCl_3$. The optimal conditions for Photo-Fenton processes were determined: pH was 5, the concentration of ferrous ion (Fe II) was 0.01 M. The concentration of hydrogen peroxide was 0.1 M, and molar ratio ($Fe^{2+}/H_2O_2$) was 0.1. The optimal reaction time was 80 min. Under the optimal condition of Photo-Fenton process, chemical oxygen demand (COD), color and fecal coliform removal efficiencies were about 79, 70, and 99.4%, respectively and sludge production was 7.5 mL from 100 mL of solution.

Photoinduction of UV-absorbing Compounds and Photo-protective Pigment in Phaeocystis pouchetii and Porosira glacialis by UV Exposure (실내 자외선 노출 실험을 통한 극지 식물플랑크톤(Phaeocystis pouchetii, Porosira glacialis)의 자외선 흡수물질 생성 연구)

  • Ha, Sun-Yong;Kang, Sung-Won;Park, Mi-Ok;Kim, Young-Nam;Kang, Sung-Ho;Shin, Kyung-Hoon
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.397-409
    • /
    • 2010
  • Herein, we compared the production rate of UV-absorbing compounds (mycosporine-like amino acids) and carotenoids in two phytoplankton species--Phaeocystis pouchetii and Porosira glacialis--which are the dominant species in Polar Regions under artificial UV radiation conditions. P. pouchetii exposed to UVR and PAR evidenced reductions in the carbon fixation rate, and was not significantly influenced by differing light conditions. However, the concentrations of UV-absorbing compounds and photo-protective pigments of P. pouchetii were increased with increasing exposure time, but P. glacialis maintained constant levels during the UVR exposure experiment. The production rates of MAAs showed a reverse phase between the two phytoplankton species. The carbon fixation rate of P. pouchetii cells was inhibited by exposure to UV radiation, but the production rates of MAAs in P. pouchetii were increased under UV radiation exposure. The carbon fixation rate and production rate of MAAs in P. glacialis were simultaneously inhibited under UV radiation exposure conditions. These results provide us with new information regarding the processes involved in the production of UV-absorbing compounds and photoprotective pigments in two phytoplankton species.