• Title/Summary/Keyword: Photo-electrochemical hydrogen production

Search Result 5, Processing Time 0.022 seconds

Trend of Photo-Electrochemical Hydrogen Production Technology (광전기화학적 수소제조 기술 동향분석)

  • Han, Hye-Jung;Kang, Kyung-Seok;Baeg, Jin-Ook;Moon, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.741-748
    • /
    • 2011
  • Hydrogen is clean and renewable, and recognized as a very promising energy resource to solve both depletion of petroleum and environmental problems caused by the use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, the technology trend of photo-electrochemical (PEC) hydrogen production was scrutinized based on the patent and paper analysis. Open/registered patents of US, JP, EP, and KR and SCI Journals related to the PEC hydrogen production technology between 1996~2010 were reviewed. Patents and papers were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend was discussed by classifying each patent and paper based on the publishing year, country, and organization, and analyzing the core patents and papers.

Photoelectrochemical Hydrogen Production with Holmium-doped TiO2 (홀뮴 도핑된 TiO2를 이용한 광전기화학 수소 제조)

  • HYEONMIN JUNG;MINSEO KIM;HYEKYUNG CHO;HYUNKU JOO;KYOUNGSOO KANG;KWANGBOK YI;HANSUNG KIM;JAEKYUNG YOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.413-420
    • /
    • 2023
  • Holmium-doped TiO2 nanotubes (Ho-TNTs) were manufactured through anodization treatment and electrochemical deposition, and optimization experiments were conducted using various Holmium doping concentrations and time as variables. Surface as well as electrochemical characteristics were analyzed to study the prepared photocatalysts. Ho-TNTs were found to exist only in anatase phase through X-ray diffraction analysis. Ho-TNTs with 0.01 wt% 100 seconds shows a photocurrent density of 3.788 mA/cm2 and an effective photo-conversion efficiency (PCE) of 4.30%, which is more efficient than pure TiO2 nanotubes (pure-TNTs) (at bias potential 1.5 V vs. Hg/HgO). The photocatalytic activity of the aforementioned Ho-TNTs for hydrogen production was evaluated with the result of -29.20 µmol/h·cm2.

Photo-Electrochemical Hydrogen Production Over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-Catalysts (P와 B 이온이 함유된 나노 티타니아 광촉매의 광 전기화학적 수소 제조 성능)

  • Kwak, Byeong-Sub;Choi, Hee-Chan;Woo, Jae-Wook;Lee, Ju-Seung;An, June-Bum;Ryu, Si-Gyeong;Kang, Mi-Sook
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.78-82
    • /
    • 2011
  • For effectively photochemical hydrogen production, P (negative semiconductor) and B (positive semiconductor) ions (0.1, 0.2, 0.5, and 1.0 mol%) incorporated $TiO_2$ (P- and B-$TiO_2$) nanometer sized particles were prepared using a solvothermal method as a photocatalyst. The characteristics of the synthesized P- and B-$TiO_2$ photocatalysts were analyzed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), W-visible spectroscopy (UV-Vis), and Photoluminescence spectra (PL). The evolution of $H_2$ from methanol/water (1:1) photo-splitting over B-$TiO_2$ photocatalysts was enhanced compared to those over pure $TiO_2$ and P-$TiO_2$ photocatalysts; 0.42 mL of $H_2$ gas was evolved after 10 h when 0.5 g of a 1.0 mol% B-$TiO_2$ catalyst was used.

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Effect of Ag Addition on ZnO for Photo-electrochemical Hydrogen Production (ZnO를 이용한 광 전기화학적 수소제조 반응 시 Ag 첨가 영향)

  • Kwak, Byeong Sub;Kim, Sung-Il;Kang, Misook
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • In this study, ZnO, which is widely known as a non $TiO_2$ photocatalyst, was synthesized using coprecipitation method and Ag was added in order to improve the catalytic performance. The physicochemical characteristics of the synthesized ZnO and Ag/ZnO particles were checked using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL), and photocurrent measurements. The performance of catalysts was tested by $H_2$ production using the photolysis of $H_2O$ with MeOH. By adding Ag which plays a role as an electron capture on the ZnO catalyst, the performance increased due to the recombination of excited electrons and holes. In particular, $8.60{\mu}mol\;g^{-1}$ $H_2$ was produced after 10 h reaction over the 0.50 mol% Ag/ZnO.