• 제목/요약/키워드: Photo-conductivity

검색결과 57건 처리시간 0.027초

Preparation of UV Curable Gel Polymer Electrolytes and Their Electrochemical Properties

  • Oh, Boo-Keun;Jung, Won-Il;Kim, Dong-Won;Rhee, Hee-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권5호
    • /
    • pp.683-687
    • /
    • 2002
  • We have investigated the effect of the number of ethylene oxide (EO) units inside poly(ethylene glycol)dimethacrylate (PEGDMA) on the ionic conductivity of its gelled polymer electrolyte, whose content ranges from 50 to 80 wt%. PEGDMA gelled polym er electrolytes, a crosslinked structure, were prepared using simple photo-induced radical polymerization by ultraviolet light. The effect of the number of EO on the ionic conductivity was clearly shown in samples of lower liquid electrolyte content. We have concluded that the ionic conductivity increased in proportion to both the number of EO units and the plasticizer content. We have also studied the electrochemical properties of 13PEGDMA (number of EO units is 13) gelled polymer electrolyte.

Generalized photo-thermal interactions under variable thermal conductivity in a semi-conducting material

  • Aatef D. Hobiny;Ibrahim A. Abbas;C Alaa A. El-Bary
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.641-648
    • /
    • 2023
  • In this article, we explore the issue concerning semiconductors half-space comprised of materials with varying thermal conductivity. The problem is within the framework of the generalized thermoelastic model under one thermal relaxation time. The half-boundary space's plane is considered to be traction free and is subjected to a thermal shock. The material is supposed to have a temperature-dependent thermal conductivity. The numerical solutions to the problem are achieved using the finite element approach. To find the analytical solution to the linear problem, the eigenvalue approach is used with the Laplace transform. Neglecting the new parameter allows for comparisons between numerical findings and analytical solutions. This facilitates an examination of the physical quantities in the numerical solutions, ensuring the accuracy of the proposed approach.

원자층 증착법과 스퍼터링을 이용한 고체산화물 연료전지용 YSZ 전해질에 관한 연구 (Comparison of Yittria Stabilized Zirconia Electrolytes(YSZ) for Thin Film Solid Oxide Fuel Cell by Atomic Layer Deposition and Sputtering)

  • 탄비르 와카스하산;하승범;지상훈;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • In this research, two thin film deposition techniques, Atomic Layer Deposition and Sputtering are carried out for the fabrication of Yittria Stabilized Zirconia electrolyte for thin film Solid Oxide Fuel Cell. Zirconium to Yittrium ratio for both cases is about 1/8. Scanning Electron Microscope(SEM) image shows that the growth rate per hour for Atomic Layer Deposition is faster than for sputtering. X-ray Photo-electron Spectroscopy(XPS) shows that the peaks of both Zirconia and Yittria shift towards higher bending energy for the case of Atomic Layer deposition and thus are more strongly attached to the substrate. Later, Nyquist plot was used to compare the conductivity of Yittria Stabilized Electrolyte for both cases. The conductivity at $300^{\circ}C$ for Atomic Layer Deposited Yittria Stabilized Zirconia is found to be $5{\times}10^{-4}S/cm$ while that for sputtered Yittria Stabilized Zirconia is $2{\times}10^{-5}S/cm$ at the same temperature. The reason for better performance for Atomic Layered YSZ is believed to be the Nano-structured layer fabrication that aids in along the plane conduction as compared to the columnarly structured Sputtered YSZ.

  • PDF

단채널 GaAs MESFET의 DC특성 및 광전류 특성의 해석적 모델에 대한 연구 (Analytical Modeling for Dark and Photo Current Characteristics of Short Channel GaAs MESFETs)

  • 김정문;서정하
    • 대한전자공학회논문지SD
    • /
    • 제41권3호
    • /
    • pp.15-30
    • /
    • 2004
  • 본 연구는 게이트 매몰형 단채널 GaAs MESFET의 암전류 특성과 광전류 특성을 해석적으로 모델링하였다. 모델링 결과, 광조사에 의한 중성영역내의 광 전도도의 증가 보다 공핍층 내의 광 기전력 발생에 따른 공핍층 폭의 감소효과로 인한 드레인 전류의 증가가 크게 일어남을 보이고 있다. 중성영역의 케리어 밀도 변화는 1차원 케리어 연속 방정식으로부터 도출하였으며, 광 기전력 도출은 게이트-공핍층 경계면의 광전류와 열전자 방출전류가 상쇄되는 조건으로 도출하였다. 드레인전압 인가에 따른 단채널 소자의 채널 방향의 전계효과를 고려한 2차원 Poisson 방정식의 해법을 제안하였다. 모델링 결과를 시뮬레이션한 결과, 적절한 암전류 및 광전류 특성에 대한 통합적 모델이 얻어짐을 확인하였다.

유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구 (A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties)

  • 김상민;이강휘;이성수;이혁재;이병헌;김경섭;이정환
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

다공성 TiO2-SiO2 복합 단열재의 열전도율 평가 (Evaluation of Thermal Conductivity of Porous TiO2-SiO2-Base Thermal Insulation)

  • 최병철;김종호;김종범;정우남;이상현
    • 융복합기술연구소 논문집
    • /
    • 제8권1호
    • /
    • pp.21-25
    • /
    • 2018
  • We developed nano-porous $TiO_2-SiO_2$ composites (commercial name : PTI, porous titania insulator) with low thermal conductivity as thermal insulating material as well as function of photocatalyst. The objectives of this paper are, firstly, to evaluate of the thermal conductivity of the PTI powder in the temperature range from -160 to $250^{\circ}C$, secondly to evaluate of thermal conductivities of insulation materials that is applied PTI powder. The structure of the PTI powder that has the pores size of 20-30 nm and the particle diameter of 2-10 nm. The PTI had a high surface area of $400m^2/g$ and a mean pore size of $45{\AA}$, which was fairly uniform. The thermal conductivity was measured by GHP(guarded hot plate) method and HFM(heat flux method). The PTI structure is a three-dimensional network nano-structures composed by a pearl-necklace that involved a precious stone in the center of the necklace. The thermal conductivities of PTI-PX powder by the GHP and HFM were 0.0366 W/m.K, 0.0314 W/m.K at $20^{\circ}C$, respectively. This is similar to values that are proportional to the square of the absolute temperature of the thermal conductivity of static air. The thermal conductivities of insulating sheets coated with PTI powder were similar results with that of the PTI powder.

동분말이 함유된 에폭시 수지를 이용한 마이크로 기어의 제작에 관한 연구 (A Study on a Microreplication Process for Real 3D Structures Using a Soft Lithography)

  • 정성일;박선준;이인환;정해도;조동우
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.29-36
    • /
    • 2004
  • In this paper, a new replication technique for a real 3D microstructure was introduced, in which a master Pattern WES made of photo-curable epoxy using a microstereolithography technology, and then it was transferred onto an epoxy-copper particle composite. A helical gear was selected as one of the real 3D microstructure for this study, and it was replicated from a pure epoxy to an epoxy composite. In addition, the transferability of the microreplication process was evaluated, and the properties of :he epoxy composite were compared to that of the pure epoxy, including hardness, wear-resistance and thermal conductivity.

TCO Workfunction Engineering with Oxygen Reactive Sputtering Method for Silicon Heterojunction Sola Cell Application

  • 봉성재;김선보;안시현;박형식;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.492-492
    • /
    • 2014
  • On account of the good conductivity and optical properties, TCO is generally used in silicon heterojunction solar cell since the emitter material, hydrogenated amorphous silicon (a-Si:H), of the solar cell has low conductivity compare to the emitter of crystalline silicon solar cell. However, the work function mismatch between TCO layer and emitter leads to band-offset and interfere the injection of photo-generated carriers. In this study, work function engineering of TCO by oxygen reactive sputtering method was carried out to identify the trend of band-offset change. The open circuit voltage and short circuit current are noticeably changed by work function that effected from variation of oxygen ratio.

  • PDF

산소 반응성 스퍼터링을 이용한 TCO의 일함수 변경과 이종접합 태양전지 적용에 관한 연구

  • 안시현;김선보;장경수;최우진;최재우;박형식;장주연;송규완;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.600-600
    • /
    • 2012
  • 실리콘 이종접합 태양전지는 diffused dopant를 이용하여 high conductivity의 emitter를 가지는 기존의 crystalline silicon 태양전지와는 다르게 a-Si:H를 이용한 low conductivity emitter 때문에 TCO를 front electrode 및 anti-reflection layer로 사용한다. 하지만 TCO와 emitter사이의 work function mismatch에 의한 band-offset이 발생하고 photo-generation된 carrier의 injection을 막아 효율 상승을 제한하게 된다. 본 연구는 산소 반응성 스퍼터링을 통한 front TCO의 일함수 변경과 이에 따른 TCO와 emitter 계면에 존재하는 band-offset 변화에 대하여 분석하였다. 특히 산소 분압에 따른 front TCO의 일함수 변화에 따라 개방전압 및 단락전류 변화가 두드러지게 나타났으며, 직렬저항 성분 변화에 따른 충진률 변화에 따른 효율상승을 얻을 수 있었다.

  • PDF