• Title/Summary/Keyword: Photo-Induced Instability

Search Result 6, Processing Time 0.022 seconds

The Instability Behaviors of Spray-pyrolysis Processed nc-ZnO/ZnO Field-effect Transistors Under Illumination (스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터의 광학적 노출에 대한 열화 현상 분석)

  • Junhee Cho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.78-82
    • /
    • 2023
  • Metal oxide semiconductor (MOS) adapting spray-pyrolysis deposition technique has drawn large attention based on their high quality of intrinsic and electrical properties in addition to simple and low-cost processibility. To fully utilize the merits of MOS field-effect transistors (FETs) , transparency, it is important to understand the instability behaviors of FETs under illumination. Here, we studied the photo-induced properties of nc-ZnO/ZnO field-effect transistors (FETs) based on spray-pyrolysis under illumination which incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. Our experiments reveal that nc-ZnO in active layer suppressed the light instabilities of FETs.

  • PDF

Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels

  • Toh, William;Ding, Zhiwei;Ng, Teng Yong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Undergoing large volumetric changes upon incremental environmental stimulation, hydrogels are interesting materials which hold immense potentials for utilization in a wide array of applications in diverse industries. Owing to the large magnitudes of deformation it undergoes, swelling induced instability is a commonly observed sight in all types of gels. In this work, we investigate the instability of photo-thermal sensitive hydrogels, produced by impregnating light absorbing nano-particles into the polymer network of a temperature sensitive hydrogel, such as PNIPAM. Earlier works have shown that by using lights of different intensities, these hydrogels follow different swelling trends. We investigate the possibility of utilizing this fact for remote switching applications. The analysis is built on a thermodynamic framework of inhomogeneous large deformation of hydrogels and implemented via commercial finite element software, ABAQUS. Various examples of swelling induced instabilities, and its corresponding dependence on light intensity, will be investigated. We show that the instabilities that arise have their morphologies dependent on the light intensity.

The Effect of Light on Amorphous Silicon Thin Film Transistors based on Photo-Sensor Applications

  • Ha, Tae-Jun;Park, Hyun-Sang;Kim, Sun-Jae;Lee, Soo-Yeon;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.953-956
    • /
    • 2009
  • We have investigated the effect of light on amorphous silicon thin film transistors based photo-sensor applications. We have analyzed the instability caused by electrical gate bias stresses under the light illumination and the effect of photo-induced quasi-annealing on the instability. Threshold voltage ($V_{TH}$) under the negative gate bias stress with light illumination was more decreased than that under the negative gate bias stress without light illumination even though $V_{TH}$ caused by the light-induced stress without negative gate bias was shifted positively. These results are because the increase of carrier density in a channel region caused by the light illumination has the enhanced effect on the instability caused by negative gate bias stress. The prolonged light illumination led to the recovery of shifted VTH caused by negative gate bias stress under the light illumination due to the recombination of trapped hole charges.

  • PDF

A Light-induced Threshold Voltage Instability Based on a Negative-U Center in a-IGZO TFTs with Different Oxygen Flow Rates

  • Kim, Jin-Seob;Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Kim, Seong-Hyeon;An, Jin-Un;Ko, Young-Uk;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.315-319
    • /
    • 2014
  • In this paper, we investigate visible light stress instability in radio frequency (RF) sputtered a-IGZO thin film transistors (TFTs). The oxygen flow rate differs during deposition to control the concentration of oxygen vacancies, which is confirmed via RT PL. A negative shift is observed in the threshold voltage ($V_{TH}$) under illumination with/without the gate bias, and the amount of shift in $V_{TH}$ is proportional to the concentration of oxygen vacancies. This can be explained to be consistent with the ionization oxygen vacancy model where the instability in $V_{TH}$ under illumination is caused by the increase in the channel conductivity by electrons that are photo-generated from oxygen vacancies, and it is maintained after the illumination is removed due to the negative-U center properties.

New Whitening agent: Kojyl-APPA

  • Hwang, Jae-Sung;Kim, Duck-Hee;Soomi Anh;Baek, Heung-Soo;Park, Hyunjung -Jin;Lee, Jin-Young;Lee, Byeong-Gon;Ihseop Chang;Kang, Hak-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.119-131
    • /
    • 2001
  • Exposure of the human skin to UV-light can cause sun-tanning, photoaging and even photo-carcinogenesis. Melanin is important in protecting the skin against UV damage, but excessive or uneven melanin production can lead to the formation of freckles and aged spot. Control of hyperpigmentation is becoming even more important as aged population continues to grow. These needs led us to develop effective and safe depigmenting-agent, kojyl 3-aminopropyl phosphate (kojyl-APPA), called Whitegen. The development of whitegen was based on the fact that phosphate group of 3-aminopropyl phosphate can make kojic acid more compatible to the skin membrane and more stable. Instability of kojic acid has been a problem in cosmetic use. The insertion of phosphoester group has been recognized as a powerful tool to improve such physical properties as solubility and stability, because the phosphodiester residue is well characterized as a non-toxic moiety, having a high affinity for cell membranes. Kojyl-APPA showed no tyrosinase inhibition effect compared to kojic acid in vitro, but showed tyrosinase inhibition effect in situ. It means that kojyl-APPA is converted to kojic acid enzymatically in cells. Kojyl-APPA showed the inhibitory activity on melanin synthesis in mouse melanoma and normal humal melnaocytes and also showed long-lasting stability in comparison with its original form (kojic acid). Kojyl-APPA showed depigmenting effects when applied to UVB-induced hyperpigmentated region of guinea pig skin. Based on these results, kojyl 3-aminopropyl phosphate can be used as a safe and effective ingredient for the brightness and cleanness of skin.

  • PDF

Photoelectrochemical Behavior of Cu2O and Its Passivation Effect (산화구리의 광전기화학적 거동 특성)

  • Yun, Hongkwan;Hong, Soonhyun;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide($Cu_2O$) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of $Cu_2O$ is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of $Cu_2O$ while imperfections of the $Cu_2O$ thin films are removed. This study investigates the photoelectrochemical properties of $Cu_2O$. However, severe photo-induced corrosion impedes the use of $Cu_2O$ as a photoelectrode. Two candidates, $TiO_2$ and $SnO_2$, are selected for the passivation layer on $Cu_2O$ by by considering the Pourbaix-diagram. $TiO_2$ and $SnO_2$ passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that $SnO_2$ is a good passivation layer for $Cu_2O$.