• Title/Summary/Keyword: Phosphorylated Akt

Search Result 79, Processing Time 0.022 seconds

PKB phosphorylates p27, impairs its nuclear import and opposes p27-mediated G1 arrest

  • Lee, Jin-Hwa;Liang, Ji-Yong;Slingerland, Joyce M.
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2002.09a
    • /
    • pp.36-39
    • /
    • 2002
  • PKB activation may contribute to resistance to antiproliferative signals and breast cancer progression in part by impairing nuclear import and action of p27. PKB transfection caused cytoplasmic p27 accumulation and cytokine resistance. The nuclear localization region of p27 contains a PKB/Akt consensus site at threonine 157 and p27 phosphorylation by PKB impaired its nuclear import in vitro. PKB/Akt phosphorylated wild type p27 but not p27T157A. PKB activation led to cytoplasmic mislocalization of p27WT but p27T157A remained nuclear. In PKB activated cells, p27WT failed to cause Gl arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52/128) of primary human breast cancers in association with PKB activation. Thus, we show a novel mechanism whereby PKB impairs p27 function that is associated with an aggressive phenotype in human breast cancer.

  • PDF

Ameliorative Effect of Persicaria Poliata Etract through the Rgulation of AP-1, PI3K/Akt and MAPK Sgnaling Mlecules in UVB-Iradiated HaCaT Clls (HaCaT 세포에서 며느리 배꼽 추출물의 AP-1, PI3K/Akt 및 MAPK 활성 조절을 통한 광손상 억제 효과)

  • Hyun-Seo Yoon;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Purpose : Skin is the primary barrier to protect the body from various exogenous factors. Among them, UVB exposure can cause the induction of not only excessive inflammatory responses but also the degradation of extracellular matrix (ECM), including collagen and elastin. This study tried to investigate the ameliorative effect of Persicaria perfoliata ethanol extract (PPEE) on UVB-irradiated photodamage through the regulation of activator protein (AP)-1, phosphoinositide 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) signaling molecules in HaCaT cells. Methods : The cytotoxicity of PPEE on HaCaT cells was evaluated by the WST-1 assay. The 80 mJ/cm2 of UVB (312 nm) was irradiated on HaCaT cells to induce the photodamage. Western blot analysis was conducted to investigate the protein expression levels of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and heme oxygenase (HO)-1 for ameliorative status by PPEE treatment in UVB-exposed HaCaT cells. In addition, the activated status of the inflammatory transcription factor, AP-1, as well as upstream signaling molecules, PI3K/Akt, and MAPK, were also evaluated by Western blot analysis. Results : Any cytotoxic effect was not induced at the concentration up to 200 ㎍/ml by PPEE treatment. Protein expression levels of COX-2 and MMP-9 were significantly down- and up-regulated by PPEE treatment. The inflammatory transcription factor AP-1, stimulated by UVB irradiation, was also significantly attenuated by PPEE treatment. The phosphorylated status of PI3K/Akt and MAPK were mitigated by PPEE treatment in UVB-exposed HaCaT cells. Moreover, PPEE treatment potently accelerated the expression of HO-1 and its transcription factor, nuclear factor-erythroid 2-related factor (Nrf)2, which is known for its anti-inflammatory activity. Conclusion : Consequently, PPEE treatment significantly regulated COX-2 and MMP-9 expressions in UVB-irradiated HaCaT cells. The inflammatory transcription factor AP-1, along with upstream signaling molecules PI3K/Akt and MAPKs, were also attenuated by PPEE treatment in UVB-exposed HaCaT cells. Additionally, PPEE treatment exaggerated HO-1 expression and Nrf2 activation, which might have contributed to the anti-inflammatory activity of PPEE. These results indicate that PPEE could be a candidate for attenuating UVB-induced photodamage in human skin.

Molecular biomarkers in extrahepatic bile duct cancer patients undergoing chemoradiotherapy for gross residual disease after surgery

  • Koh, Hyeon Kang;Park, Hae Jin;Kim, Kyubo;Chie, Eui Kyu;Min, Hye Sook;Ha, Sung W.
    • Radiation Oncology Journal
    • /
    • v.30 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • Purpose: To analyze the outcomes of chemoradiotherapy for extrahepatic bile duct (EHBD) cancer patients who underwent R2 resection or bypass surgery and to identify prognostic factors affecting clinical outcomes, especially in terms of molecular biomarkers. Materials and Methods: Medical records of 21 patients with EHBD cancer who underwent R2 resection or bypass surgery followed by chemoradiotherapy from May 2001 to June 2010 were retrospectively reviewed. All surgical specimens were reevaluated by immunohistochemical staining using phosphorylated protein kinase B (pAKT), CD24, matrix metalloproteinase 9 (MMP9), survivin, and ${\beta}$-catenin antibodies. The relationship between clinical outcomes and immunohistochemical results was investigated. Results: At a median follow-up of 20 months, the actuarial 2-year locoregional progression-free, distant metastasis-free and overall survival were 37%, 56%, and 54%, respectively. On univariate analysis using clinicopathologic factors, there was no significant prognostic factor. In the immunohistochemical staining, cytoplasmic staining, and nuclear staining of pAKT was positive in 10 and 6 patients, respectively. There were positive CD24 in 7 patients, MMP9 in 16 patients, survivin in 8 patients, and ${\beta}$-catenin in 3 patients. On univariate analysis, there was no significant value of immunohistochemical results for clinical outcomes. Conclusion: There was no significant association between clinical outcomes of patients with EHBD cancer who received chemoradiotherapy after R2 resection or bypass surgery and pAKT, CD24, MMP9, survivin, and ${\beta}$-catenin. Future research is needed on a larger data set or with other molecular biomarkers.

Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway

  • Radhika Adhikari;Saugat Shiwakoti;Eunmin Kim;Ik Jun Choi;Sin-Hee Park;Ju-Young Ko;Kiyuk Chang;Min-Ho Oak
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.515-525
    • /
    • 2023
  • The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.

Auranofin accelerates spermidine-induced apoptosis via reactive oxygen species generation and suppression of PI3K/Akt signaling pathway in hepatocellular carcinoma

  • Hyun Hwangbo;Da Hye Kim;Min Yeong Kim;Seon Yeong Ji;EunJin Bang;Su Hyun Hong;Yung Hyun Choi;JaeHun Cheong
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Auranofin is a US Food and Drug Administration (FDA)-approved anti-arthritis medication that functions as a thioredoxin reductase inhibitor. Spermidine, a polyamine present in marine algae, can exert various physiological functions. Herein, we examined the synergistic anticancer activity of auranofin and spermidine in hepatocellular carcinoma (HCC). Combined treatment with auranofin and spermidine suppressed cell viability more efficiently than either treatment alone in HCC Hep3B cells. The isobologram plotted by calculating the half maximal inhibitory concentration (IC50) values of each drug indicated that the two drugs exhibited a synergistic effect. Based on the analysis of annexin V and cell cycle distribution, auranofin and spermidine markedly induced apoptosis in Hep3B cells. Moreover, auranofin and spermidine increased mitochondria-mediated apoptosis by promoting mitochondrial membrane potential (Δψm) loss. Auranofin and spermidine significantly increased reactive oxygen species (ROS) production in Hep3B cells, and the blocking ROS suppressed apoptosis induced by spermidine and auranofin. In addition, auranofin and spermidine reduced the expression of phosphorylated phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt), and PI3K inhibitor accelerated auranofin- and spermidine-induced apoptosis. Using ROS scavenger and PI3K inhibitor, we revealed that ROS acts upstream of auranofin- and spermidine-induced apoptosis. Collectively, our study suggests that combination treatment with auranofin and spermidine could afford synergistic anticancer activity via ROS overproduction and reduced PI3K/Akt signaling pathway.

5-Hydroxytryptophan Reduces Levodopa-Induced Dyskinesia via Regulating AKT/mTOR/S6K and CREB/ΔFosB Signals in a Mouse Model of Parkinson's Disease

  • Yujin Choi;Eugene Huh;Seungmin Lee;Jin Hee Kim;Myoung Gyu Park;Seung-Yong Seo;Sun Yeou Kim;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.402-410
    • /
    • 2023
  • Long-term administration of levodopa (L-DOPA) to patients with Parkinson's disease (PD) commonly results in involuntary dyskinetic movements, as is known for L-DOPA-induced dyskinesia (LID). 5-Hydroxytryptophan (5-HTP) has recently been shown to alleviate LID; however, no biochemical alterations to aberrant excitatory conditions have been revealed yet. In the present study, we aimed to confirm its anti-dyskinetic effect and to discover the unknown molecular mechanisms of action of 5-HTP in LID. We made an LID-induced mouse model through chronic L-DOPA treatment to 6-hydroxydopamine-induced hemi-parkinsonian mice and then administered 5-HTP 60 mg/kg for 15 days orally to LID-induced mice. In addition, we performed behavioral tests and analyzed the histological alterations in the lesioned part of the striatum (ST). Our results showed that 5-HTP significantly suppressed all types of dyskinetic movements (axial, limb, orolingual and locomotive) and its effects were similar to those of amantadine, the only approved drug by Food and Drug Administration. Moreover, 5-HTP did not affect the efficacy of L-DOPA on PD motor manifestations. From a molecular perspective, 5-HTP treatment significantly decreased phosphorylated CREB and ΔFosB expression, commonly known as downstream factors, increased in LID conditions. Furthermore, we found that the effects of 5-HTP were not mediated by dopamine1 receptor (D1)/DARPP32/ERK signaling, but regulated by AKT/mTOR/S6K signaling, which showed different mechanisms with amantadine in the denervated ST. Taken together, 5-HTP alleviates LID by regulating the hyperactivated striatal AKT/mTOR/S6K and CREB/ΔFosB signaling.

Apoptosis-Induced Effects of Extract from Artemisia annua Linné by Modulating Akt/mTOR/GSK-3β Signal Pathway in AGS Human Gastric Carcinoma Cells (AGS 인체 위암 세포에서 Akt/mTOR/GSK-3β 신호경로 조절을 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1257-1264
    • /
    • 2016
  • Extracts from Artemisia annua $Linn\acute{e}$ (AAE) have various functions (anti-malaria, anti-virus, and anti-oxidant). However, the mechanism of the effects of AAE is not well known. Thus, we determined the apoptotic effects of AAE in AGS human gastric carcinoma cells. In this study, we suggested that AAE may exert cancer cell apoptosis through the Akt/mammalian target of rapamycin (mTOR)/glycogen synthase kinase (GSK)-$3{\beta}$ signal pathway and mitochondria-mediated apoptotic proteins. Activation by Akt phosphorylation resulted in cell proliferation through phosphorylation of tuberous sclerosis complex 2 (TSC2), mTOR, and GSK-$3{\beta}$. Thus, de-phosphorylation of Akt inhibited cell proliferation and induced apoptosis through inhibition of Akt, mTOR, phosphorylation of GSK-$3{\beta}$ at serine9, and control of Bcl-2 family members. Inhibition of GSK-$3{\beta}$ attenuated loss of mitochondrial membrane potential and release of cytochrome C. Bax and pro-apoptotic proteins were activated by their translocation into mitochondria from the cytosol. Translocation of Bax induced outer membrane transmission and generated apoptosis through cytochrome C release and caspase activity. We also measured 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay, Hoechst 33342 staining, Annexin V-PI staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide staining, and Western blotting. Accordingly, our study showed that AAE treatment to AGS cells resulted in inhibition of Akt, TSC2, GSK-$3{\beta}$-phosphorylated, Bim, Bcl-2, and pro-caspase 3 as well as activation of Bax and Bak expression. These results indicate that AAE induced apoptosis via a mitochondrial event through regulation of the Akt/mTOR/GSK-$3{\beta}$ signaling pathways.

Inhalation Toxicity of Particulate Matters Doped with Arsenic Induced Genotoxicity and Altered Akt Signaling Pathway in Lungs of Mice

  • Park, Jin-Hong;Kwon, Jung-Taek;Minai-Teherani, Arassh;Hwang, Soon-Kyung;Chang, Seung-Hee;Lim, Hwang-Tae;Cho, Hyun-Seon;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.261-266
    • /
    • 2010
  • In the workplace, the arsenic is used in the semiconductor production and the manufacturing of pigments, glass, pesticides and fungicides. Therefore, workers may be exposed to airborne arsenic during its use in manufacturing. The purpose of this study was to evaluate the potential toxicity of particulate matters (PMs) doped with arsenic (PMs-Arsenic) using a rodent model and to compare the genotoxicity in various concentrations and to examine the role of PMs-Arsenic in the induction of signaling pathway in the lung. Mice were exposed to PMs $124.4{\pm}24.5\;{\mu}g/m^3$ (low concentration), $220.2{\pm}34.5\;{\mu}g/m^3$ (middle concentration), $426.4{\pm}40.3\;{\mu}g/m^3$ (high concentration) doped with arsenic $1.4\;{\mu}g/m^3$ (Low concentration), $2.5\;{\mu}g/m^3$ (middle concentration), $5.7\;{\mu}g/m^3$ (high concentration) for 4 wks (6 h/d, 5 d/wk), respectively in the whole-body inhalation exposure chambers. To determine the level of genotoxicity, Chromosomal aberration (CA) assay in splenic lymphocytes and Supravital micronucleus (SMN) assay were performed. Then, signal pathway in the lung was analyzed. In the genotoxicity experiments, the increases of aberrant cells were concentration-dependent. Also, PMs-arsenic caused peripheral blood micronucleus frequency at high concentration. The inhalation of PMs-Arsenic increased an expression of phosphorylated Akt (p-Akt: protein kinase B) and phpsphorylated mammalian target of rapamycin (p-mTOR) at high concentration group. Taken together, inhaled PMs-Arsenic caused genotoxicity and altered Akt signaling pathway in the lung. Therefore, the inhalation of PMs-Arsenic needs for a careful risk assessment in the workplace.

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling;Liu, Xin-Tong;Bao, Yi-Ni;Yan, Bing;Jiang, Nan;Yu, Bo-Yang;Liu, Ji-Hua
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.6.1-6.12
    • /
    • 2018
  • Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.

Effect of Epigallocatechin Gallate on Phosphoinositide 3-kinase/Akt and Glycogen Synthase Kinase-3 Pathway in Oxidative-stressed N18D3 Cells Following $H_2O_2$ Exposure (산화성 손상을 받은 N18D3세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과)

  • Koh, Seong Ho;Kwon, Hyug Sung;Oh, Hwa Soon;Oh, Jae Ho;Park, Ynun Joo;Kim, Jun Gyou;Kim, Ki Sok;Kim, Yang Soon;Yang, Ki Hwa;Kim, Seung U.;Kim, Seung H.;Jung, Hai Kwu
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using $H_2O_2$ treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min $100\;{\mu}m\;H_2O_2$ exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

  • PDF