• 제목/요약/키워드: Phosphorylated Akt

검색결과 79건 처리시간 0.032초

Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과 (Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells)

  • 김은지;김근태;김보민;임은경;하성호;김상용;김영민
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.764-771
    • /
    • 2016
  • 개똥쑥 추출물은 항박테리아, 항바이러스 그리고 항산화효과를 포함한 다양한 기능을 가지고 있는 것으로 잘 알려져 있다. 그러나, 개똥쑥 항증식 작용기전은 알려지지 않았다. 따라서, 우리는 Hep3B 간암 세포에서 AAE추출물의 apoptotic 효과를 알아보고자 한다. 본 연구의 목적은 AAE가 인체 간암 세포주(Hep3B)의 증식에 미치는 효과를 분석하고 이에 대한 apoptosis의 효과를 조사하는데 있다. 인산화에 의해 활성화된 Akt는 TSC2, mTOR 그리고 GSK-3β의 인산화를 유도하여 세포증식을 유도한다. 본 연구에서, 우리는 AAE가Akt-mTOR-GSK3β 신호 경로와 mitochondria를 매개하는 apoptotic 단백질을 통한 암세포의 apoptosis 유도할 것이라고 추측하였다. 이를 위해, 먼저 AAE가 처리농도에 따라 세포증식에 미치는 효과를 분석하였다. AAE처리는 세포증식을 억제시켰을 뿐만 아니라 젖산 탈수소 효소의 방출을 유도하였다. 이러한 결과는 MTT assay, LDH assay로 확인하였다. 또한 Hoechst 33342 staining, Annexin Ⅴ- PI staining, JC-1 staining 그리고 Western blotting을 통해 apoptosis 효과를 확인하였다. 본 연구에서는 간암세포에 AAE의 처리가 Akt, TSC2, GSK-3β-phosphorylated, Bim, Bcl-2, pro-caspase 3의 억제와 Bak, Bax 활성을 유도한다는 것을 확인하였다. 이러한 결과는 AAE가 Akt-mTOR-GSK-3β 신호 경로를 통해 intrinsic apoptosis를 유도한다는 것을 나타낸다.

후두암 및 폐암 세포주에서 Flavopiridol이 방사선에 의한 아포토시스에 미치는 영향 (Effect of Flavopiridol on Radiation-induced Apoptosis of Human Laryngeal and Lung Cancer Cells)

  • 김수지;권은경;이승희;박혜진;우홍균
    • Radiation Oncology Journal
    • /
    • 제25권4호
    • /
    • pp.227-232
    • /
    • 2007
  • 목적: 세포 주기 억제제인 flavopirldol이 후두암과 폐암 세포주에서 방사선으로 인한 아포토시스에 미치는 영향을 알아보고 세포 내 아포토시스 조절 물질들의 발현에 어떤 변화를 가져오는지 알아본다. 대상 및 방법: 사람 후두암 세포주인 AMC-HN3와 폐암 세포주인 NCI-H460을 배양하여 1) 아무 처치도 하지 않은 군, 2) 방사선 조사만 한 군, 3) flavopiridol 약물 처치만 한 군, 4) 방사선과 flavopriodol 동시 병합 치료를 한 군으로 나누어 비교하였다. 방사선 조사시 4 MV 선형가속기의 X-ray를 10 Gy 조사하였고 flavopiridol은 세포 배양액에 100 nM 농도로 희석하여 24시간 동안 투여했다. 치료를 시작한 시점으로부터 24시간 후에 네 군의 아포토시스율을 비교하였다. 아포토시스율은 유세포 분석기를 이용하여 sub-G1 세포의 분율로 구했다. 또한 네 군에서 cleaved caspase-3, cleaved PARP (poly(ADP-ribose) polymerase), p53, p21, cyclin D1, phosphorylated Akt (protein kinase B) 발현 양상을 비교하기 위해 면역단백분석을 시행하였다. 결 과: 방사선 단독 처치 또는 flavoplridol 단독 처치한 군에 비해 방사선과 flavopiridol을 동시 병합 치료한 군에서 아포토시스율이 증가하는 것을 두 가지 암세포주 모두에서 확인할 수 있었다. 면역단백분석에서도 cleaved caspase-3, cleaved PARP 발현이 동시 병합 치료 군에서 높게 나타나는 것을 관찰할 수 있었다. 또한 두 세포주 모두에서 flavopiridol에 의해 cyclin D1 발현이 감소되는 것을 확인하였으나 flavopiridol이 p53, p21 발현에 미치는 영향은 세포주에 따라 다르게 나타났으며 Akt 발현은 두 세포주 모두에서 flavopiridol 투여에 의한 변화가 없었다. 결 론: 본 실험을 통해 사람 후두암 및 폐 암 세포주에서 flavoplridol이 방사선에 의한 아포토시스를 증가시킴으로써 방사선 치료 효과를 증진시킬 수 있음을 확인하였다. Flavopiridol이 p53, p21 발현에 미치는 영향은 세포주에 따라 다른 것으로 나타났으며 phosphorylated Akt 발현은 영향을 주지 않는 것으로 나타났다.

Effects of $\alpha$-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells

  • Na, Mi-Hee;Seo, Eun-Young;Kim, Woo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제3권4호
    • /
    • pp.265-271
    • /
    • 2009
  • The role that antioxidants play in the process of carcinogenesis has recently gained considerable attention. $\alpha$-Lipoic acid, a naturally occurring disulfide molecule, is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathione peroxidase activity. In this study, we examined changes in the protein and mRNA expression associated with cell proliferation and apoptosis in MDA-MB-231 breast cancer cultured in the presence of various concentrations (0, 250, 500, and 1000 ${\mu}mol/L$) of $\alpha$-lipoic acid. The results revealed that $\alpha$-lipoic acid inhibited the growth of breast cancer cells in a dose-independent manner (P < 0.05). Additionally, $ErbB_2$ and $ErbB_3$ protein and mRNA expressions were significantly decreased in a dose-dependent manner in response to $\alpha$-lipoic acid (P < 0.05). Furthermore, the protein expression of phosphorylated Akt (p-Akt) levels and total Akt, and the mRNA expression of Akt were decreased dose-dependently in cells that were treated with $\alpha$-lipoic acid (P < 0.05). Bcl-2 protein and mRNA expressions were also decreased in cells that were treated with $\alpha$-lipoic acid (P < 0.05). However, Bax protein and mRNA expressions were increased in cells treated with $\alpha$-lipoic acid (P < 0.05). Finally, caspase-3 activity was significantly increased in a dose-dependent manner in cells treated with $\alpha$-lipoic acid (P < 0.05). In conclusion, we demonstrated that $\alpha$-lipoic acid inhibits cell proliferation and induces apoptosis in MDA-MB-231 breast cancer cell lines.

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoonho;Lee, Keunwook;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.322-327
    • /
    • 2018
  • A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

Kahweol inhibits lipid accumulation and induces Glucose-uptake through activation of AMP-activated protein kinase (AMPK)

  • Baek, Jung-Hwan;Kim, Nam-Jun;Song, Jun-Kyu;Chun, Kyung-Hee
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.566-571
    • /
    • 2017
  • Weight loss ${\geq}5$ percent is sufficient to significantly reduce health risks for obese people; therefore, development of novel weight loss compounds with reduced toxicity is urgently required. After screening of natural compounds with anti-adipogenesis properties in 3T3-L1 cells, we determined that kahweol, a coffee-specific diterpene, inhibited adipogenesis. Kahweol reduced lipid accumulation and expression levels of adipogenesis and lipid accumulation-related factors. Levels of phosphorylated AKT and phosphorylated JAK2, that induce lipid accumulation, decreased in kahweol-treated cells. Particularly, kahweol treatment significantly increased AMP-activated protein kinase (AMPK) activation. We revealed that depletion of AMPK alleviated reduction in lipid accumulation from kahweol treatment, suggesting that inhibition of lipid accumulation by kahweol is dependent on AMPK activation. We detected more rapid reduction in blood glucose levels in mice administrated kahweol than in control mice. We suggest that kahweol has anti-obesity effects and should be studied further for possible therapeutic applications.

구강 편평상피세포암 동위종양 모델에서 내피세포의 수용체 타이로신 인산화효소에 대한 표적치료 (TARGETING RECEPTOR TYROSINE KINASE ON ENDOTHELIAL CELLS IN AN ORTHOTOPIC TUMOR MODEL OF ORAL SQUAMOUS CELL CARCINORMA)

  • 박영욱;김소희
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권2호
    • /
    • pp.55-65
    • /
    • 2009
  • Purpose: We determined the therapeutic effects of blockade of epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) receptor tyrosine kinases on the growth of oral squamous cell carcinoma(OSCC) xenografted in athymic nude mice. Experimental Design: We investigated the in vivo antitumor effects of a tyrosine kinase inhibitor for EGFR and VEGFR-2, AEE788 in a mouth floor(orthotopic) tumor model. Nude mice with orthotopic tumors were randomized to receive AEE788, paclitaxel, a combination of AEE788 and paclitaxel, or control. Antitumor mechanisms of AEE788 were determined by immunohistochemical/immunofluorescent and apoptosis assays. Results: Tumors of mice treated with AEE788 demonstrated down-regulation of phosphorylated EGFR, phosphorylated VEGFR and their downstream mediators(pMAPK and pAkt), decreased proliferative index, decreased microvessel density(MVD). As a result, growth of the primary tumor and nodal metastatic potentials were inhibited by AEE788. Conclusion: These data show that EGFR and VEGFR can be molecular targets for the treatment of OSCC.

Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy

  • Lee, Hyun-Woo;Jang, Kenny Seung Bin;Choi, Hye Ji;Jo, Ara;Cheong, Jae-Ho;Chun, Kyung-Hee
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.697-702
    • /
    • 2014
  • Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis.

점액표피양암종 세포주에서 Kochia scoparia 추출물의 세포자멸과 자가포식 유도 효과 (Apoptosis and Autophagy Induced by Methanol Extract of Kochia scoparia in Human Mucoepidermoid Carcinoma Cell Line)

  • 도미향;유미현;김욱규
    • 대한구강악안면병리학회지
    • /
    • 제42권6호
    • /
    • pp.167-174
    • /
    • 2018
  • Natural products are vastly utilized as a source of chemotherapeutic agents for human cancers. Kochia scopraia is traditionally used for the cure of urological and dermatological diseases. Recently, methanol extract of Kochia scoparia (MEKS) has been shown to have anti-cancer activity to various human cancers. However, there is no report demonstrating the anti-cancer activity of MEKS in human mucoepidermoid carcinoma (MEC) cells. In this study, the authors studied the effects of MEKS on the cell proliferation and underlying mechanism in YD15 human MEC cells. MEKS decreased YD15 cell proliferation proven by trypan blue exclusion assay and induced apoptosis, evidenced by cell cycle analysis and western blotting. Autophagy induction by MEKS was verified by western blotting. In addition, MEKS regulated the expression of phosphorylated Akt, phosphorylated p38 and Nrf2 protein. This results can imply that MEKS might be a potential candidate for the treatment of human MEC cells.

Protective Effect of Rice Bran Oil against β-Amyloid Protein-Induced Memory Impairment and Neuronal Death in Mice

  • Jang, Ji Yeon;Lee, Hong Kyu;Yoo, Hwan-Su;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • 제26권3호
    • /
    • pp.221-229
    • /
    • 2020
  • This study was undertaken to investigate the protective effect of rice bran oil (RBO) on amyloid β protein (Aβ) (25-35)-induced memory impairment and brain damage in an ICR mouse model. Memory impairment was produced by intracerebroventricular microinjection of 15 nmol Aβ (25-35) and assessed using the passive avoidance test. Treatment with RBO at 0.1, 0.5, or 1 mL/kg (p.o. daily for 8 days) protected against Aβ (25-35)-induced memory impairment. Furthermore, Aβ (25-35)-induced decreases in glutathione and increases in lipid peroxidation and cholinesterase activity in brain tissue were inhibited by RBO, and Aβ (25-35)-induced increases of phosphorylated mitogen-activated protein kinases (MAPKs) and inflammatory factors, and changes in the levels of apoptosis-related proteins were significantly inhibited by RBO. Furthermore, Aβ (25-35) suppressed the PI3K/Akt pathway and the phosphorylation of CREB, but increased phosphorylation of tau (p-tau) in mice brain; these effects were significantly inhibited by administration of RBO. These results suggest that RBO inhibits Aβ (25-35)-induced memory impairment by inducing anti-apoptotic and anti-inflammatory effects, promoting PI3K/Akt/CREB signaling, and thus, inhibiting p-tau formation.

Serine 389 phosphorylation of 3-phosphoinositide-dependent kinase 1 by UNC-51-like kinase 1 affects its ability to regulate Akt and p70 S6kinase

  • Kim, Kidae;Park, Sung Goo;Park, Byoung Chul;Kim, Jeong-Hoon;Kim, Sunhong
    • BMB Reports
    • /
    • 제53권7호
    • /
    • pp.373-378
    • /
    • 2020
  • Phosphorylation of the signaling component by protein kinase often leads to a kinase cascade or feedback loop. 3-Phosphoinositide-dependent kinase 1 (PDK1) signaling pathway diverges into various kinases including Akt and p70 S6 kinase (p70S6k). However, the PDK1 feedback mechanism remains elusive. Here, we demonstrated that UNC-51-like kinase (ULK1), an autophagy initiator kinase downstream of mechanistic target of rapamycin (mTOR), directly phosphorylated PDK1 on serine 389 at the linker region. Furthermore, our data showed that this phosphorylation affected the kinase activity of PDK1 toward downstream substrates. These results suggest a possible negative feedback loop between PDK1 and ULK1.