• Title/Summary/Keyword: Phosphorylase kinase

Search Result 10, Processing Time 0.027 seconds

Characterization of a Bifunctional HPr Kinase/Phosphorylase from Leuconostoc mesenteroides SY1

  • Park, Jae-Yong;Lee, Kang-Wook;Lee, Ae-Ran;Jeong, Woo-Ju;Chun, Ji-Yeon;Lee, Jong-Hoon;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.746-753
    • /
    • 2008
  • The hprK gene encoding bifunctional HPrK/P (kinase/phosphorylase) was cloned from L. mesenteroides SY1, a strain isolated from kimchi. hprK was transcribed as a monocistronic gene. His-tagged HPrH16A and HPrK/P were produced in E. coli BL21 (DE3) using pET26b(+) and purified. HPrK/P phosphorylation assay with purified proteins showed that the kinase activity of HPrK/P increased at slightly acidic pHs. Divalent cations such as $Mg^{2+}$ and $Mn^{2+}$ and glycolytic intermediates such as fructose-1, 6-bisphosphate (FBP) and phosphoenolpyruvate (PEP) increased the kinase activity of HPrK/P, but inorganic phosphate strongly inhibited it. Kinetic studies for the kinase activity of HPrK/P showed that the apparent $K_m$ values were 0.18 and $14.57{\mu}M$ for ATP and HPr, respectively. The $K_m$ value for the phosphorylase activity of HPrK/P was $14.16{\mu}M$ for P-Ser-HPr (HPr phosphorylated at the serine residue).

Clinical, Biochemical, and Genetic Characterization of Glycogen Storage Type IX in a Child with Asymptomatic Hepatomegaly

  • Kim, Jung Ah;Kim, Ja Hye;Lee, Beom Hee;Kim, Gu-Hwan;Shin, Yoon S.;Yoo, Han-Wook;Kim, Kyung Mo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.2
    • /
    • pp.138-143
    • /
    • 2015
  • Glycogen storage disease type IX (GSD IX) is caused by a defect in phosphorylase b kinase (PhK) that results from mutations in the PHKA2, PHKB, and PHKG2 genes. Patients usually manifest recurrent ketotic hypoglycemia with growth delay, but some may present simple hepatomegaly. Although GSD IX is one of the most common causes of GSDs, its biochemical and genetic diagnosis has been problematic due to its rarity, phenotypic overlap with other types of GSDs, and genetic heterogeneities. In our report, a 22-month-old boy with GSD IX is described. No other manifestations were evident except for hepatomegaly. His growth and development also have been proceeding normally. Diagnosed was made by histologic examination, an enzyme assay, and genetic testing with known c.3210_3212del (p.Arg1070del) mutation in PHKA2 gene.

Identification and Functional Analysis of Proteins Interacting with Streptomyces coelicolor RNase ES (Streptomyces coelicolor 리보핵산내부분해효소 RNase ES의 결합단백질 규명 및 기능분석)

  • Kim, Jong-Myung;Song, Woo-Seok;Kim, Hyun-Lee;Go, Ha-Young;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.72-75
    • /
    • 2007
  • Using co-immunoprecipitation, we identified proteins interacting with Streptomyces coelicolor RNase ES, an ortholog of Escherichia coli RNase E that plays a major role in RNA decay and processing. Polyphosphate kinase and a homolog of exoribonuclease polynucleotide phosphorylase, guanosine pentaphosphate synthetase I that use inorganic phophate were co-precipitated with RNase E, indicating a possibility of S. coelicolor RNase ES to form a multiprotein complex called degradosome, which has been shown to be formed by RNase E in E. coli. Polynucleotide phophorylase proteins from these two phylogenetically distantly related bacteria species showed similar RNA cleavage action in vitro. These results imply the ability of RNase ES to form a multiprotein complex that has structurally and functionally similar to that of E. coli degradosome.

A Novel PHKA1 Mutation in a Patient with Glycogen Storage Disease Type IXD (당원 축적병 9D (GSD9D) 환자의 신규 PHKA1 돌연변이)

  • Kim, Hye Jin;Nam, Soo Hyun;Kim, Sang Beom;Chung, Ki Wha;Choi, Byung-Ok
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.672-679
    • /
    • 2020
  • Distal myopathy is a clinically and genetically heterogeneous group of degenerative diseases of the distal muscle. Glycogen storage disease type IXD (GSD9D) is a metabolic distal myopathy characterized by muscle deficiency of phosphorylase kinase, a key regulatory enzyme in glycogen metabolism. Affected individuals may develop muscle weakness, degeneration, and cramps, as well as abnormal muscle pain and stiffness after exercise. It has been reported that mutations in the PHKA1 gene which encodes the alpha subunit of muscle phosphorylase kinase cause GSD9D. In this study, we examined a Korean GSD9D family with a c.3314T>C (p.I1105T) mutation in the PHKA1 gene. This mutation has not been previously reported in any mutation database nor was it found in 500 healthy controls. The mutation region is well conserved in various other species, and in silico analysis predicts that it is likely to be pathogenic. To date, only seven mutations in the PHKA1 gene have been documented, and this is the first report of Korean GSD9D patients. This study also describes and compares the clinical symptoms and pathological conditions of previously reported cases and these Korean patients. We believe that our findings will be useful for the molecular diagnosis of GSD9D.

Study on the Hypoglycemic Action of Ginseng Saponin on Streptozotocin Induced Diabetic Rats (II) (인삼 Saponin 분획의 고혈당강하작용에 관한 연구(II))

  • 주충노;윤수희
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.198-209
    • /
    • 1992
  • The decreased activities of liver enzymes relating to carbohydrate metabolism such as glucose- 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and acetyl CoA carboxylase of streptozotocin injected rats were significantly modified by the intraperitoneal injection of ginseng saponin mixture and/or purified ginsenosides. However, several enzymes such as pyruvate kinase, malic enzyme and glycogen phosphorylase were not modified appreciably by the saponin administration, suggesting that the effect of ginseng saponin might be depend upon individual enzymes. Examination of liver enzymes by liver professing technique using perfusion buffer containing saponin (10-3%) showed that the ginseng saponin might stimulate insulin biosynthesis as well as the related enzyme activities.

  • PDF

Molecular Cloning and Characterization of Calumenin in Rabbit Skeletal Sarcoplasmic Reticulum

  • Jung, Dai-Hyun;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.53-53
    • /
    • 2003
  • Calumenin was previously identified as a high affinity Ca$\^$2+/ binding protein in mouse cardiac sarcoplasmic reticulum (SR). For the present study, a 48 kDa skeletal homologue of calumenin was identified by sucrose-density gradient of rabbit skeletal SR membranes, concanavalin A treatment, 2D-gel electrophoresis, $\^$45/Ca$\^$2+/ overlay, Stains-all staining, and MALDI-TOF analysis. We attempted to clone the skeletal calumenin by RT-PCR based on mouse cardiac and human calumenin sequences. The deduced amino acid sequence (315 residues) of the skeletal calumenin showed high identity to mouse cardiac calumenin (90%). As seen in the cardiac calumenin, the deduced sequence contains a 19 amino acid N-terminal signal sequence and a HDEF C-terminal sequence, a putative retrieval signal to ER. Also, the skeletal calumenin contains one N-glycosylation site, three PKC phosphorylation sites, eight casein kinase 2 phosphorylation sites, and 6 EF-hand domains. GST-calumenin showed a conformational change and increased mobility in the presence of Ca$\^$2+/ in SDS-PAGE. Three calumenin interacting proteins (ryanodine receptor 1, glycogen phosphorylase, and phosphofructo kinase) were identified by pull-down assay with GST-calumenin and solubilized SR. All the interactions were Ca$\^$2+/dependent. The present results suggest that calumenin plays an important role in Ca$\^$2+/ homeostasis of muscle cells.

  • PDF

Thymidine Production by Corynebacterium ammoniagenes Mutants

  • Song, Kyung-Hwa;Kwon, Do-Young;Kim, Sang-Yong;Lee, Jung-Kul;Hyun, Hyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.477-483
    • /
    • 2005
  • Corynebacterium ammoniagenes ATCC 6872, which does not accumulate pyrimidine nucleoside or nucleotide, was metabolically engineered to secrete a large amount of thymidine. Characteristics of 5-fluorouracil resistance ($FU^r$), hydroxyurea resistance ($HU^r$), trimethoprim resistance ($TM^r$), thymidylate phosphorylase deficiency ($deoA^-$), inosine auxotrophy ($ino^-$), 5-fluorocytosine resistance ($FC^r$), thymidine kinase deficiency, and thymidine resistance ($thym^r$) were successively introduced into mutant strains KR3 and DY5T9-5, and shake-flask cultures were able to accumulate 408.1 mg/l and 428.2 mg/l of thymidine, respectively, as a major product. The mutant strains did not accumulate thymine at all and accumulated less than 10 mg/l of other pyrimidine nucleosides, such as cytosine, cytidine, and deoxycytidine, as byproducts.

The Central Concept for Chitin Catabolic Cascade in Marine Bacterium, Vibrios

  • Jung, Byung-Ok;Roseman, Saul;Park, Jae-Kweon
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The enzymatic hydrolysis of chitin has been studied for almost a century, and early work established that at least two enzymes are required, a chitinase that mainly yields the disaccharide N,N'-diacetylchitobiose, or $(GlcNAc)_2$, and a "chitobiase", or ${\beta}$-N-acetylglucosaminidase, which gives the final product G1cNAc. This pathway has not been completely identified but has remained the central concept for the chitin catabolism through the $20^{th}$ century1 including in marine bacteria. However, the chitin catabolic cascade is quite complex, as described in this review. This report describes three biologically functional genes involved in the chitin catabolic cascade of Vibrios in an attempt to better understand the metabolic pathway of chitin.

Tests for Acute Coronary Syndrome (급성관동맥증후군 관련 검사)

  • Kim, Kyung-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.13-29
    • /
    • 2001
  • The enzyme activities of creatine kinase (CK), its isoenzyme MB (CK-MB) and of lactate dehydrogenase isoenzyme 1 (LD-1) have been used for years in diagnosing patients with chest pain in order to differentiate patients with acute myocardial infarction (AMI) from non-AMI patients. These methods are easy to perform as automated analyses, but they are not specific for cardiac muscle damage. During the early 90's the situation changed. First, creatine kinase ME mass (CK-MB mass) replaced the measurement of CK-MB activity. Subsequently cardiac-specific proteins, troponin T (cTnT) and troponin I (cTnI) appeared and displacing LD-1 analysis. However, troponin concentrations in blood increase only from four to six hours after onset of chest pain. Therefore a rapid marker such as myoglobin, fatty acid binding protein or glycogen phosphorylase BB could be used in early diagnosis of AMI. On the other hand, CK-MB isoforms alone may also be useful in rapid diagnosis of cardiac muscle damage. Myoglobin, CK-MB mass, cTnT and cTnI are nowadays widely used in diagnosing patients with acute chest pain. Myoglobin is not cardiac-specific and therefore requires supplementation with some other analyses such as troponins to support the myoglobin value. Troponins are very highly cardiac-specific. Only the sera of some patients with severe renal failure, which requires hemodialysis, have elevated cTnT and/or cTnI without there being any evidence of cardiac damage. The latest studies have shown that elevated troponin levels in sera of hemodialysis patients point to an increased risk of future cardiac events in a similar manner to the elevated troponin values in sera of patients with unstable angina pectoris. In addition, the bedside tests for cTnT and cTnI alone- or together with myoglobin and CK-ME mass can be used instead of quantitative analyses in the diagnosis of patients with chest pain. These rapid tests are easy to perform and they do not require expensive instrumentation. For the diagnosis of patient with chest pain, routinely myoglobin and CK-ME mass measurements should be performed whenever they are requested (24 h/day) and cTnT or cTnI on admission to the hospital and then 4-6 and 12 hours later and maintained less than 10% in imprecision.

  • PDF

Familial Glycogen Storage Disease Type IXa Diagnosed by Targeted Exome Sequencing (엑솜 시퀀싱으로 진단된 가족성 당원병 IXa 형 증례)

  • Sohn, Young Bae;Jang, Ju Young;Lee, Dakeun;Jang, Ja-Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.3
    • /
    • pp.96-102
    • /
    • 2017
  • Glycogen storage disease type IX (GSD IX) is caused by deficiency of phosphorylase kinase which plays a role in breakdown of glycogen. Mutations in PHKA2 are the most common cause of GSD IX (GSD IXa). Clinical manifestations of GSD IXa include hepatomegaly, elevation of liver enzyme, growth retardation, fasting hypoglycemia, and fasting ketosis. However, the symptoms overlap with those of other types of GSDs. Here, we report Korean familial cases with GSD IXa whose diagnosis was confirmed by targeted exome sequencing. A 4-year old male patient was presented with hepatomegaly and persistently elevated liver enzyme. Liver biopsy revealed swollen hepatocyte filled with glycogen storage, suggesting GSDs. Targeted exome sequencing was performed for the differential molecular diagnosis of various types of GSDs. A hemizygous mutation in PHKA2 were detected by targeted exome sequencing and confirmed by Sanger sequencing: c.3632C>T (p.Thr121Met), which was previously reported. The familial genetic analysis revealed that his mother was heterozygous carrier of c.3632C>T mutation and his 28-month old brother had hemizygous mutation. His brother also had hepatomegaly and elevated liver enzyme. The hypoglycemia was prevented by frequent meals with complex carbohydrate, as well as cornstarch supplements. Their growth and development is in normal range. We suggest that targeted exome sequencing could be a useful diagnostic tool for the genetically heterogeneous and clinically indistinguishable GSDs. A precise molecular diagnosis of GSD can provide appropriate therapy and genetic counseling for the family.

  • PDF