• Title/Summary/Keyword: Phosphorus removal efficiency

Search Result 337, Processing Time 0.033 seconds

Factors affecting Phosphorus removal in BNR process applied Moving Bed Biofilm (유동상 생물막법을 적용한 BNR공법에서의 인제거 영향인자)

  • Park, Woon-Ji;Kim, Dong-Oog;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.3-10
    • /
    • 2006
  • In this study, the of MBBR(moving bed biofilm reactor) process for Phosphorus Removal efficiency depending on seasons and the factors affecting phosphorus removal efficiency in the process is evaluated. As a result of experiment, T-P removal efficiency has its highest value in winter, (80.8%). and T-P removal efficiency has its lowest value in autumn, (49%). Optimum SRT for Phosphorus Removal revealed is about 8.8 days and process performs more efficiently as the temperature decreases. It is accepted that nitrate to anaerobic zone is affecting the Phosphorus removal process. With increasing the organic loading rate, Phosphorus removal efficiency also increases. Also, an experiment has been conducted to find out the highest efficiency according to Media existence and it has revealed that Media addition provides better phosphate removal.

  • PDF

A Study on Phosphorus Removal Effects Per Iron Surface Area in FNR Process (철전기분해장치(FNR)에서 철판의 표면적이 인제거에 미친 영향에 관한 연구)

  • Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.568-574
    • /
    • 2012
  • Objectives: The purpose of this experiment is to understand the phosphorus removal ratio effects of iron plates per unit of surface area through the iron electrolysis system, which consists of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis, which uses an iron precipitation reactor in anoxic and oxic basins, consisted of iron plates with total areas of 400 $cm^2$, 300 $cm^2$ and 200 $cm^2$ respectively. The FNR process was operated with a hydraulic retention time and a sludge retention time of 12 hours and three days, respectively. Wastewater used in the experiments was prepared by dissolving $KH_2PO_4$ in influent water. Results: The iron plates 400 $cm^2$ (16.6 $mA/cm^2$), 300 $cm^2$ (13.3 $mA/cm^2$) and 200 $cm^2$ (7.3 $mA/cm^2$) in surface area in the phosphorus reactor had respective phosphorus of 2.4 mg/l, 2.7 mg/l and 3.2 mg/l in the effluent and phosphorus removal respective efficiencies of 90.3%, 89.1% and 87.1%. The effluent in the reactor, where the iron plate was not used, had relatively very low phosphorus removal efficiency showing phosphorus concentration of 15.3 mg/l and a phosphorus removal efficiency about 38.3%. Phosphorus removal per ferrous was 0.472 mgP/mgFe in the iron electrolysis system where the surface area of iron was low. Phosphorus pollution load per active surface area and the phosphorus removal efficiency had an interrelation of RE = -0.27LS + 89.0 (r = 0.85). Conclusion: With larger iron plate surface area, the elution of iron concentration and phosphorus removal efficiency was higher. The removal efficiency of phosphorus has decreased by increasing the initial phosphate concentration in the iron electrodes. This shows a tendency of decreasing phosphorus removal efficiency because of decreasing of iron deposition as the phosphorus pollution load per active surface area increases.

Phosphorus Removal from Synthetic Wastewater by Waste Oyster Shells (폐굴껍질에 의한 합성폐수 중의 인 제거)

  • 정경훈;정오진;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.43-49
    • /
    • 2000
  • A laboratory experiments were performed to investigate the effects of several factors on the phosphorus removal by waste oyster shells. The waste oyster shells used in this experiments were crushed particle, calcined particle and extracted solution. A higher efficiencies of phosphorus removal were observed, when a particle size of crushed and calcined particle were smaller. The effluent concentration of phosphorus was around 1.6mg/ι in continuous column experiment which packed with crushed particle of waste oyster shell at the influent concentration of PO4-P of 10 mg/ι. But the clogging of column occurred with increasing of throughput volume of influent. The efficiency of phosphorus removal increased with increasing of dosage amount of crushed, calcined particle and extracted solution. When the calcined particle which contained only about 1/10~1/100 of crushed particle was used, the efficiency of phosphorus removal was correspondingly equivalent to the removal efficiency obtained from crushed particle. The efficiency of phosphorus removal by calcined particle after 9 runs repeated use was decreased about 21.5% as that of the first run. The removal efficiency of 100% could have been achieved at the HRT of 18 hours during the continuous treatment of phosphorus by the solution extracted from calcined particle.

  • PDF

Study on Simultaneous Removal of Nitrogen and Phosphorus Using Zeocarbon

  • Hong, Ji-Sook;Suh, Jeong-Kwon
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.112-116
    • /
    • 2010
  • The objective of this study was to evaluate the possibility of simultaneous removal of ammonium, nitrate and phosphorus in water using the zeocarbon. In this study, the surface of zeocarbon was modified by acid because of difficulty in application of water treatment. After surface modification, the strength was enhanced about 62% higher than that of original one. The removal efficiency of ammonium and nitrate using the modified zeocarbon was about 47% and 32%, respectively and were higher than that of zeocarbon. In batch type experiment on the simultaneous removal of ammonium, nitrate and phosphorus, the presence of phosphorus did not have influence on nitrogen removal efficiency. Concomitantly, removal efficiency of phosphorus was obtained was about 35%. This indicates that the surface modified zeocarbon can be applied for simultaneous removal of nitrogen and phosphorus. Consequently, our results could be used as basic data to design of one-stage nitrogen/phosphorus simultaneous removal system.

Phosphorus and Nitrogen Removal from Synthetic Wastewater by Intermittently Activated Sludge combined with Aluminium Corrosion (알루미늄부식을 조합한 간헐폭기법에 의한 합성폐수 중의 인 및 질소 제거)

  • 정경훈;정오진;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.99-106
    • /
    • 2001
  • A laboratory experiment was performed to investigate phosphorus and nitrogen removal from synthetic wastewater by intermittently activated sludge process packed with aluminium plate. Three continuous experimental systems, I. e. an intermittently activated sludge process(Run A), an intermittently activated sludge process with an aluminium plate packed into the reactor(Run B), and a reactor post stage(Run C) were compared. In the batch experiments, the phosphorus removal time in the reactor packed with copper and aluminium plate simultaneously was faster than that of the reactor packed with only an aluminium plates. However, the reactor packed with only an aluminium plate could be used for phosphorus removal. Move phosphorus was removed with an increase of surface area of aluminium plate and electrolysis(NaCl) concentration. The efficiency of COD and nitrogen removal was not affected in Run B. However, the phosphrus removal efficiency decreased because of reaction products and activated sludge which gradually covered gradually the surface of the aluminium plate. The efficiency of phosphorus removal in Run C was 86.3% at the HRT of 3.2 hours. Especially, the efficiency of phosphorus removal in Run C was higher than that in Run B.

  • PDF

Phosphorus Removal in Pilot Plant Using Biofilm Filter Process from Farm Wastewater

  • Shin, Sung-Euy;Choi, Du-Bok;Lee, Choon-Boem;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2006
  • Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter process were investigated using loess balls and Chromobacterium LEE-38 at a pilot plant. When Chromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that of Acinetobacter CHA-2-14 or Acinetobacter CHA-4-5, respectively. When a loess ball of $11{\sim}14mm$ manufactured at a $960^{\circ}C$ calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to $55^{\circ}C$, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below $20^{\circ}C$ or above $40^{\circ}C$, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal conditions. When Acinetobacter sp. Lee-11 was used, the average removal efficiency in the p-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, when Chromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively.

Optimization for Phosphorus Remove by Loess Ball Using Chromobacterium (Chromobacterium을 이용한 황토볼에 의한 인산 제거를 위한 최적화)

  • Choi Du Bok;Lee Choon-Boem;Cha Wol-Suk
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.584-589
    • /
    • 2005
  • To investigate factors affecting the removal of phosphorus from the practical wastewater in the F-STEP PROCESS using a loess ball and Chromobacterium WS 2-14, first, the loess ball size and calcining temperature, initial pH, initial phosphorus concentration, working temperature, and aeration were studied. A $2\~4mm$ of loess ball made at $960^{\circ}C$ of calcining temperature was the most suitable one for the removal of phosphorus. When the initial pH was increased from 3.0 to 6.0, the removal efficiency of phosphorus was increased. Especially, at 6.0 of initial pH, the maximum removal efficiency of phosphorus was $88.7\%$. The maximum removal efficiency of phosphorous was gained, 1.8mg/h when the initial concentration of phosphorous was 5.0mg/1. When the operating temperature was $30^{\circ}C$, the maximum removal efficiency of phosphorus was obtained. In the case of aeration, when it was increased from 0.5 to 5.0L/min, the removal efficiency of phosphorus was increased. On the other hand, above 7.0 L/min, the removal efficiency of phosphorus did not increased. Using the optimum operation conditions, pilot tests for the effective removal efficiency of phosphorus were carried out for 65 days. The average removal efficiency of phosphorus was $92.0\%$. The average removal efficiency of COD, BOD, and SS were 77.1, 74.2, and $86.4\%$, respectively. from the results, it can be concluded that F-STEP PROCESS using loess ball might be useful process for phosphorus removal.

The Nitrogen and Phosphorus Removal of MUNR Process Using Sludge Carbon Source (초음파처리 슬러지 탄소원을 첨가한 침지헝 분리막공법의 질소, 인 처리에 관한 연구)

  • 김영규;황성희
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.1-3
    • /
    • 2002
  • This study was to evaluate on the removal efficiencies of total nitrogen and phosphorus in municipal wastewater at MUNR process using sludge carbon source for environmental micro-organism. The removal efficiencies of total suspended solid were 85.9~91%, total nitrogen were 38.6~87.2% and total phosphorus were 30.8~39.0%, respectively. It was shown that removal efficiency of nitrogen was effectively influenced by sludge carbon source treated with ultrasonication. The removal efficiency of total phosphorus was low because the sludge was not wasted during this treatment.

A Study on the Removal of Phosphorus in the Lake (호수내의 인 제거에 관한 연구)

  • Kim, Kyoungtae;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1998
  • The feasibility of usage of sludge from water treatment plant and chalk from schools and institutes was investigated to remove the phosphorus in the lakes which induce the eutrophication every year. In this study phosphorus removal efficiencies of sludge and chalk were investigated by changing various factors. Higher phosphorus removal efficiency using larger particle size of chalk was observed which means that the surface area is not an important factor in removing phosphorus in aqueous phase. The proper shaking time and temperature were 2 hours and $25^{\circ}C$, respectively. The removal efficiency using sludge from water treatment plant was almost 100%, which is similar to those of CaO and $Ca(OH)_2$. It means that sludge can be reused in removing phosphorus. It was also found that chalk was better in removing phosphorus under alkaline condition and sludge was better under acidic condition. About 75% phosphorus removal efficiency was observed using sludge from the water sample in Lake Sihwa.

  • PDF

The Nitrogen and Phosphorus Removal of UNR Process Using Sludge Carbon Source (슬러지 탄소원을 주입한 UNR공정의 동절기 질소, 인 처리효율)

  • Kim Young Gyu;Kim In Bae
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.93-97
    • /
    • 2002
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus with municipal wastewater in ultrasonic nutrient removal (UNR) process using ultrasonic sludge carbon source. The removal efficiency for total nitrogen was 44.2% at biological nutrient removal (BNR) process, 50.8% at UNR process. The removal efficiency for total phosphorus was 45.6% at BNR process, 46.2% at UNR process. The removal of nitrogen was effectively influenced by ultrasonic sludge carbon source.