• Title/Summary/Keyword: Phosphorus circulation

Search Result 29, Processing Time 0.029 seconds

Effects of Water Circulation on the Phosphorus Release Rate from Sediments in the Lake (호수의 물 순환이 저니의 인 용출율에 미치는 영향)

  • Kim, Geonha;Jeong, Woohyeok;Choi, Seunghee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.595-601
    • /
    • 2005
  • In this research, effects of water circulation on phosphorus release from sediment into water body were studied. Sediments sampled at the Daechung Lake were used for the column experiments with circulation and non-circulation conditions. Deaeration coefficient, $K_1$ and reaeration coefficient, $K_2$ of non-circulation condition were 0.133 and 0, respectively, while $K_1$ and $K_2$ for circulation condition were 0.46 and 0.018, respectively. Oxidation Reduction Potential (ORP) showed a linear relationship with dissolved oxygen (DO) when DO is over 2 mg/L. Phosphorus concentration induced by phosphorus release from sediment was highly dependent upon DO, ORP, and pH. Under anaerobic condition, phosphorus release rate was higher for $Fe^{2+}$-bounded phosphorus compared to that of $Ca^{2+}$-bounded phosphorus.

A Numerical Prediction of Nutrient circulation in Hakata Bay by Sediment-Water Ecological Model(SWEM) (수-저질생태계모델에 의한 박다만의 물질순환예측)

  • Lee In-Cheol;Ryu Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.3-14
    • /
    • 2001
  • In order to predict nutrient circulation in Hakata bay, we have developed an ecosystem model named the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton. This model was applied to prevent eutrophication in Hakata bay, located in western Japan. The calculated results of the tidal currents by the hydrodynamic model showed good agreement with the observed currents. Moreover, SWEM simulated reasonably well the seasonal variations of water quality, and reproduced spatial heterogeneity of water quality in the bay, observed in the field. According to the simulation of phosphorus circulation at the head of the bay, it was predicted that the regeneration process of phosphorus across the sediment-water interface had a strong influence on the water quality of the bay.

  • PDF

Efficiency and Behavior of P32-labeled Phosphorus in Camellia japonica L in Blooming Stage (개화기(開花期)에 들어선 동백나무(Camellia japonica L)의 P32 표식(標識) 인산(燐酸)의 행동(行動)과 효율(効率)에 대(對)하여)

  • Kim, Jong Man;Kim, Yong Kwan
    • Journal of Korean Society of Forest Science
    • /
    • v.9 no.1
    • /
    • pp.75-80
    • /
    • 1969
  • Traced observations were carried out for efficiency and behavior of Camellia japonica L in bloom stage by employing $p^{32}$-labeled phosphorus, growing in Southern Korea, and the results were as follows. 1) The percentage of phosphorus contained in flowerbud was double the value of the other parts, and the root and the stem were the same patterns in the course of the times. 2) The circulation of the phosphorus in the plant seems to occur within 24 hours, the proportions of the phosphorus at the growing-point and flowerbud had a half of the total phosphorus contained in other parts. 3) Specific activities of each part were notable on the growing-point where, after 24 hours it took more than 80 percent. On the other hand, the efficiency rate which derived from the phosphorus was shown as about 19 percents.

  • PDF

Analysis of Treatment Efficiency according to Open-water in Constructed Wetland (인공습지 내 개방수역 조성에 따른 처리효율분석)

  • Kim, Hyung-Chul;Yoon, Chun-Gyeong;Um, Han-Yong;Kim, Hyung-Jung;Haam, Jong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.709-717
    • /
    • 2008
  • The field scale experiment which is constructed with four sets (0.88 ha for each set) of wetland (0.8 ha) and pond (0.08 ha) systems was performed to examine the effect of plant coverage on the constructed wetland performance and to recommend the optimum development and management of macrophyte communities. After six growing seasons of wetlands, plant coverage was about 100%. And the concentration of DO showed low value (1.0~5.4 mg/L). This is caused by a blighted plant consumed dissolved oxygen with decay in water column. As the result, water column went to be anaerobic conditions and T-N removal rate are 58~67%. Dead vegetation increased nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. However, wetland released phosphorus caused by a blighted plant and accumulation, the removal rate of phosphorus might be decreased. To rise of DO concentration, the three open-waters were constructed in cell 3 and 4. Cell 3 has two open-waters (width 10 m, depth 1.8 m) and cell 4 has one open-water (width 20 m, depth 1.8 m). As the result, DO concentration and treatment efficiency of nutrient and BOD were improved. In case that constructed wetland is operated for a long time, physical circulation structure such as open water help continuous circulation of aerobic and anaerobic conditions. Through the constructed open-water, treatment efficiency of phosphorus and nitrogen in wetland could be improved effectively.

Swine Wastewater Treatment Using Continuos Circulation Biofilm Process (연속순환 생물막 공정을 이용한 돈사 폐수 처리)

  • Goh, B.D.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.279-286
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Speciation of Phosphorus Dependent upon pH and Oxidation Reduction Potential in Overlying Water and Sediment (pH와 산화환원전위에 따른 상등수-퇴적물에서의 인 형태 변화)

  • Jung, Woo-Hyeok;Kim, Geon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.472-479
    • /
    • 2006
  • In this research, speciation of phosphorus in sediment and overlying water dependent upon pH and ORP(Oxidation Reduction Potential) was studied. Three possible conditions were simulated: open system with circulation, closed system with stratification and closed system with sand capping on the sediment. Phosphorus release rate from sediment was increased for both open system and closed system if pH was less than 6.0. Phosphorus concentration for closed system was increased from 0.9 mg/L to 0.51 mg/L, and stabilized at 0.34 mg/L if anaerobic conditions were maintained in the overlying water. When sand capping was implemented, phosphorus concentrations of overlying water were maintained less than those of closed system.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

A Study of Sewage Treatment with a Self-Cleaning Filtration Unit (자기세정 여과 반응장치를 이용한 하수처리에 관한 연구)

  • Mo, Sung-Young;Lee, Pul-Eip;Kim, Bum-Su;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, sewage was fed with up flow direction into a reactor equipped with a screw to circulate media that had lower specific gravity than water. It was observed that the media in the reactor could be circulated by a screw with reverse flow of the sewage feeding from the top to the bottom direction. Under these conditions, concentrations of inflow and outflow pollutants were measured at the filtration unit. Experimental results revealed stable circulation of the media with a screw in the reactor. Circulation of the media in the reactor showed more efficiency in removing the pollutants (particulate matters and organics) than no circulation. The maximum removal efficiencies of suspended solid (SS), chemical oxygen demand (CODmn), and total phosphorus (T-P) were 96%, 72% and 65%, respectively. Improvements for SS, CODmn and T-P removals with circulation of media were 52.38%, 43.14% and 118.12% respectively, compared to those without circulation.

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Effects of Submerged Aerator on the Growth of Algae in Daechung Reservoir (대청호에 설치된 수중폭기시설이 조류 발생에 미치는 영향)

  • Oh, Kyoung-Hee;Jeong, Dong-Hwan;Yang, Sang-Yong;Jeon, Tae-Wan;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • To evaluate the effects of submerged aerators installed at Chudong and Muneui areas in Daechung Reservoir on improvement of water quality and reduction of algal bloom, the water quality was monitored at the effected and control areas at the time of operation. The water temperature and concentrations of dissolved oxygen, total phosphorus, and total nitrogen in depth at the effected and control areas were not different each other, indicating the submerged aerators at these areas are not effective for circulation of water body and reduction of nutrients. In warmer season, the concentrations of total phosphorus in deep water, which was probably released from contaminated sediment or inflowed from watershed, was high. To decide the operation of aerators in this season, the concentration of total phosphorus in water should be considered because the dispersed phosphorus by operation of aerators can enhance the algal growth.