• Title/Summary/Keyword: Phosphorus Pollution

Search Result 294, Processing Time 0.027 seconds

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Chooryung-chon Tributary of the Sumjin River Basin

  • Cho, Jae-Young;Han, Kang-Wan;Choi, Jin-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.370-374
    • /
    • 2000
  • At this study, the monitoring network of water quality was established in the agricultural watershed an area 14,960 ha of the central southwest of Korea. Loads of nitrogen and phosphorus by agricultural land use were quantified bases on total amounts of stream flow. The land were used as a lowland paddy, an upland and a forest about 12.14 % (1,815 ha), 5.17 % (773 ha) and 80.31 % (12,015 ha) of the area, respectively. For six months, from May 1 to October 31, 1999, the total precipitation was 970 mm and the total amount of stream flow was $80,281,000\;m^3$. In the load of agricultural non-point sources relevant to land use, total-N was 138,413 kg, then ammonia-N 13,362 kg, nitrate-N 124,629 kg, and total-P 157 kg. The loss of nutrient which from application of chemical fertilizer were 38.0% in nitrogen and 0.1% in phosphorus to input chemical fertilizer in the watershed.

  • PDF

Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Chlamydomonas reinhardtii

  • Jang, Cheol-Ho;Lee, Gayeon;Park, Yong-Cheol;Kim, Kyoung Heon;Lee, Do Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1150-1156
    • /
    • 2017
  • Understanding phosphorus metabolism in photosynthetic organisms is important as it is closely associated with enhanced crop productivity and pollution management for natural ecosystems (e.g., algal blooming). Accordingly, we exploited highly time-resolved metabolic responses to different levels of phosphate deprivation in Chlamydomonas reinhardtii, a photosynthetic model organism. We conducted non-targeted primary metabolite profiling using gas-chromatography time-of-flight mass spectrometric analysis. Primarily, we systematically identified main contributors to degree-wise responses corresponding to the levels of phosphate deprivation. Additionally, we systematically characterized the metabolite sets specific to different phosphate conditions and their interactions with culture time. Among them were various types of fatty acids that were most dynamically modulated by the phosphate availability and culture time in addition to phosphorylated compounds.

Minimum Pollution of Silicate Oxide in the CMP Process (CMP공정에 의한 실리케이트 산화막의 오염 최소화)

  • Lee, Woo-Sun;Kim, Sang-Yang;Choi, Gun-Woo;Cho, Jun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.171-174
    • /
    • 2000
  • We have investigated the CMP slurry properties of silicate oxide thin films surface on CMP cleaning process. The metallic contaminations by CMP slurry were evaluated in four different oxide films, such as plasma enhanced tetra-ethyl-ortho-silicate glass(PE-TEOS), $O_3$ boro-phospho silicate giass( $O_3$-BPSG), PE-BPSG, and phospho-silicate glass(PSG). All films were polished with KOH-based slurry prior to entering the post-CMP cleaner. The Total X-Ray Fluorescence(TXRF) measurements showed that all oxide surfaces are heavily contaminated by potassium and calcium during polishing, which is due to a CMP slurry. The polished $O_3$-BPSG films presented higher potassium and calcium contaminations compared to PE-TEOS because of a mobile ions gettering ability of phosphorus. For PSG oxides, the slurry induced mobile ion contamination increased with an increase of phosphorus contents.

  • PDF

A study on Eutrophication control in coastal area of Gunsan (군산 연안 해역에서의 부영양화 제어에 관한 연구)

  • 김종구;정태주
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.957-966
    • /
    • 2003
  • Gunsan coastal area is one of region increasing pollution problems. To improve water quality, the reduction of these nutrients loads should be indispensible. In this study, the three-dimensional numerical hydrodynamic and ecosystem model were applied to analyze the processes affecting the eutrophication. In field survey, the average concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus(DIP) at surface waters were found to be 0.43mg/$\ell$ and 0.03mg/$\ell$ respectively, which were exceeding second grade of water quality criteria. In hydrodynamic modelling, the comparison between the simulated and observed tidal ellipses showed fairly good agreement. The ecosystem model was calibrated with the observed data in study area. The simulated results of DIN were fairly good coincided with the observed values within relative error of 32.39%, correlation coefficient(r) of 0.99. In the case of DIP, the simulated results were fairly good coincided with the observed values within relative error of 24.26%, correlation coefficient(r) of 0.82. The simulations of DIN and DIP concentrations using ecosystem model were performed under the conditions of 20∼80% reductions for pollutant loading. At simulation results, concentration of DIN and DIP were reduced to 20∼80% and under 10% in case of the 80% reduction of pollutant loading, respectively.

Evaluation of River Water Quality by MBOD Method (MBOD법에 의한 하천의 수질평가 -영산강과 섬진강을 중심으로-)

  • 김명숙
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 1983
  • Evaluation of water quality of Yeong San river and Seomjin river by using of newly simplified MBOD method was performed. Of course, thought that there is some differences between nutrient demands of heterotrophic bacteria and those of Algae which obtain it by photosynthesis, but it has little influence on evaluation of Algae Growth potential. The result of this study were as follows: 1) In both river, the value of Chemical analysis and MBOD method of inorganic salts reveals as nearly same result. 2) Though organic pollution of Seomjin river is less than that of Yeongsan but inorganic contamination is somewhat advanced BOD 2.8 ppm. and MBOD 340 ppm. in Seomjin river but BOD 22 ppm. and MBOD 480 ppm. in Yeongsan river. 3) Both river have tendency to reveal higher Nitrogen value is MBOD=MBOD -P

  • PDF

Research on the Development of Inline Phosphate Coating Process Technology to Secure the Properties of Parts for Power Transmission Machinery (동력전달용 기계부품의 물성 확보를 위한 인라인 인산염 피막처리 공정기술개발)

  • Kim, Deok-Ho;Ku, Young-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.199-208
    • /
    • 2022
  • The steel wire or steel bar processing process applied to the manufacture of various bolts and power transmission shafts was improved by applying in-line phosphate film treatment technology. By applying a polymer lubricant for a non-reactive metal forming process and a non-reactive non-phosphorus lubricating coating agent, the film formation for each process time was comparatively analyzed and reviewed. Compared to the nine processes applied previously, the in-line phosphate film treatment technology applied with only two processes has been effectively improved in terms of reduction of treatment time, reduction of facility installation area, prevention of water pollution due to wastewater, and non-use of ozone-depleting substances. In addition, it was found that it can have an important effect on productivity improvement and price competitiveness from the simplification of quality control and process control as well as improvement of the working environment.

Ecotoxicity Assessment of Potassium Hydrogen Phthalate and Verification of Standard Reference Toxicity Test Method Using Potassium Hydrogen Phthalate

  • Dong Jin Choi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Phthalates are animal carcinogens. Potassium hydrogen phthalate (KHP), which has the least complicated structure among phthalates, is used for the analysis of total organic carbon and formaldehyde. However, its toxicity has not been confirmed. A 24-hour acute toxicity test was performed using Daphnia magna, a water flea used to evaluate aquatic toxicity owing to its high sensitivity. The lowest observed effect concentration of KHP was found to be 240 mg/L. The effects of phosphorus, nitrogen, and Cr(6+), which are able to be discharged along with KHP, were also confirmed using tests. At 240 mg/L KHP, toxicity increased as phosphorus, nitrogen, and Cr(6+) increased. In addition, tests were performed to confirm the half maximal effective concentration of KHP. Through 10 test repetitions, the average ecotoxicity value was found to be 0.3, the average half maximal effective concentration was 327.75 mg/L, and the coefficient of variation (%) was 3.16%; because the latter value is lower than 25%, which is what is generally suggested for the water pollution standard method, the reproducibility of the tests is sufficient to replace the existing standard reference toxicity test that uses potassium dichromate. In addition, the half maximum effective concentration of potassium hydrogen phthalate is approximately 218 times more than that of potassium dichromate; therefore, toxicity is relatively low. In conclusion, KHP is a feasible alternative to the highly toxic potassium dichromate for performing the standard reference toxicity test.

The Prediction of Water Quality in Ulsan Area Using Material Cycle Model (물질순환모델을 이용한 울산해역의 수질예측)

  • SHIN BUM-SHICK;KIM KYU-HAN;PYUN CHONG-KUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.55-62
    • /
    • 2006
  • Recently, pollution by development in coastal areas is going from bad to worse. The Korean government is attempting to make policies that prevent water pollution, but it is still difficult to say whether such measures are lowering pollution to an acceptable level. More specifically, the general investigation that has been done in KOREA does not accurately reflect the actual conditions of pollution in coastal areas. An investigation that quantitatively assesses water quality management using rational prediction technology must be attempted, and the ecosystem model, which incorporates both the 3-dimensional hydrodynamic and material cycle models, is the only one with a broad enough scope to obtain accurate results. The hydrodynamic model, which includes advection and diffusion, accounts for the ever-changing flow and (quality) of water in coastal areas, while the material cycle model accounts for pollutants and components of decomposition as sources of the carbon, phosphorus, and nitrogen cycles. In this paper, we simulated the rates of dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen(T-N) and total-phosphorous(T-P) in Korea's Ulsan Area. Using the ecosystem model, we did simulations using a specific set of parameters and did comparative analysis to determine those most appropriate for the actual environmental characteristics of Ulsan Area. The simulation was successful, making it now possible to predict the likelihood of coastal construction projects causing ecological damage, such as eutrophication and red tide. Our model can also be used in the environmental impact assessment (EIA) of future development projects in the ocean.

Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment (AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의)

  • Choi Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

A Study on Performance Evaluation for the Bio-retention Non-point Source Pollution Treatment System (생물 저류 방법 적용을 통한 비점오염원 처리시설의 성능평가에 관한 연구)

  • Lee, Jang-Soo;Park, Yeon-Soo;Cho, Wook-Sang
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This study was purposed and performed to evaluate removal efficiency of non-point source pollution in the process and system based on bio-retention design criteria regulated by EPA. Basic Column Reactors (BCR) were prepared for optimal determinations of inflow rate of first rainfall runoff and composition and ratio of soil layers. Removal efficiencies of non-point source pollution from synthetic runoff and real first rainfall runoff, directly sampled from motor way and parking lot, were analyzed, respectively. Removal efficiency of SS, BOD, COD, T-N, and T-P were all shown to be more than 80%.