• Title/Summary/Keyword: Phosphorescent materials

Search Result 150, Processing Time 0.034 seconds

Improvement of electroluminescent efficiency by using interfacial exciton blocking layer in blue emitting electrophosphorescent organic light emitting diodes

  • Kim, Ji-Whan;Kim, Joo-Hyun;Yoon, Do-Yeung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1381-1382
    • /
    • 2005
  • We report improved efficiency in blue electrophosphorescent organic light emitting diodes by introducing an interfacial exciton blocking layer between light emitting layer (EML) and hole transport layer (HTL). Iridium(III) bis [(4,6-di-fluorophenyl)- pyridinato -N,C2']picolinate (FIrpic) was used as blue phosphorescent dopant and JHK6-3 with carbazole and electron transporting group as host and also as the interfacial layer, resulting in drastic increase in quantum efficiency.

  • PDF

Novel Electron Transporter ($Elamate^{(R)}246$) and Hole Injector ($Elamate^{(R)}9363$) for the Reduction of Operating Voltage and Improvement in Efficiency and Lifetime

  • Kathirgamanathan, Poopathy;Ganeshamurugan, S.;Partheepan, A.;Kumaraverl, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.964-967
    • /
    • 2005
  • The search for stable electron transporters and hole injectors has become particularly intense over the last 18 months as OLED manufacturers are poised to start production of OLED panels. We report here a proprietary electron transporter (E246), which reduces the operating voltage, increases the efficiency and the lifetime of OLEDs made of fluorescent or phosphorescent systems when compared with Alq3 as an electron transporter. We also report a novel proprietary hole injector (buffer, E9363) which also reduces the operating voltage, increases the efficiency and doubles the lifetime compared to CuPC. These two materials are now available commercially for display manufacturers.

  • PDF

Solution-processed electrophosphorescent devices with a thin fluoropolymer at the hole transport interfacial layer

  • Park, Jae-Kyun;Hwang, Gyoung-Seok;Lee, Tae-Woo;Chin, Byung-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.223-227
    • /
    • 2011
  • Electrophosphorescent devices with ionomer-type hole transport layers were investigated. On top of the 3,4-ethylenedioxy thiophene:poly(4-styrene sulfonate) [PEDOT:PSS] structures, fluoropolymer interfacial layers (FPIs) with different side chain lengths were introduced. Both for the PEDOT:PSS/FPI (layered) and PEDOT:PSS (mixed) structures with soluble phosphorescent emitters, the short-side-chain FPIs showed higher efficiency. The difference in the electrical properties of the two FPIs for bipolar (light-emitting) devices was not clear, but the hole-only device clearly showed the favored hole injection at the PEDOT:PSS/FPI structure with a shorter side chain, a copolymer of tetrafluoroethylene and sulfonyl fluoride vinyl ether.

Fabrication of Simple White OLED with High Color Temperature for Medical Display Applications

  • Sung, Chang-Je;Kim, Jun-Jung;Lee, Jae-Man;Choi, Hong-Seok;Han, Chang-Wook;Lee, Nam-Yang;Ahn, Byung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.489-492
    • /
    • 2009
  • We report white OLED with high color temperature based on simple stacked structure for medical display applications. White OLED was fabricated with two emitting materials of fluorescent blue dopant and phosphorescent yellow dopant. We achieved luminance efficiency of 16.2cd/A and CIE color coordinates of (0.305, 0.317) at 10mA/$cm^2$. In particular, the correlated color temperature was higher than 7,000K, enough for display applications.

  • PDF

Design of Efficient Electroluminescent lanthanide(Ⅲ) Complexes

  • Yu, Bo Ra;Kim, Hwa Jung;Park, No Gil;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1005-1008
    • /
    • 2001
  • The lanthanide complexes have been anticipated to exhibit high efficiency along with a narrow emission spectrum. Photoluminescence for the lanthanide complex is characterized by a high efficiency since both singlet and triplet excitons are involve d in the luminescence process. However, the maximum external electroluminescence quantum efficiencies have exhibited values around 1% due to triplet-triplet annihilation at high current. Here, we proposed a new energy transfer mechanism to overcome triplet-triplet annihilation by the Eu complex doped into phosphorescent materials with triplet levels that were higher than singlet levels of the Eu complex. In order to show the feasibility of the proposed energy transfer mechanism and to obtain the optimal ligands and host material, we have calculated the effect depending on ligands as a factor that controls emission intensity in lanthanide complexes. The calculation shows that triplet state as well as singlet state of anion ligand affects on absorption efficiency indirectly.

Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device (청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성)

  • Chun, Ji-Yun;Han, Jin-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Effects of BCP Electron Transport Layer Thickness on the Efficiency and Emission Characteristics of White Organic Light-Emitting Diodes (BCP 전자수송층 두께가 백색 OLED의 효율 및 발광 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) using several thicknesses of electron-transport layer. The multi-emission layer structure doped with red and blue phosphorescent guest emitters was used for achieving white emission. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as an electron-transport layer. The thickness of BCP layer was varied to be 20, 55, and 120 nm. The current efficiency, emission and recombination characteristics of multi-layer white OLEDs were investigated. The BCP layer thickness variation results in the shift of emission spectrum due to the recombination zone shift. As the BCP layer thickness increases, the recombination zone shifts toward the electron-transport layer/emission-layer interface. The white OLED with a 55 nm thick BCP layer exhibited a maximum current efficiency of 40.9 cd/A.

Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave (초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석)

  • Yu, Hong-Jeong;Chung, Won-Keun;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.325-329
    • /
    • 2011
  • $Ir(pmb)_{3}$(Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-$C,C^{2'}$ ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of $Ir(pmb)_{3}$. The ultrasonic wave enhanced the reaction yield of $Ir(pmb)_{3}$ because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of $Ir(pmb)_{3}$ was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-$Ir(pmb)_{3}$ which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.

A Two-Dimensional Terrace-Like N-heterocyclic-Pb(II) Coordination Compound: Structure and Photoluminescence Property

  • Ma, Kui-Rong;Zhu, Yu-Lan;Zhang, Yu;Li, Rong-Qing;Cao, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.894-898
    • /
    • 2011
  • The first example of lead compound from $Pb(NO_3)_2$ and $H_3L$ N-heterocyclic ligand $(H_3L\;=\;(HO_2C)_2(C_3N_2)(C_3H_7)CH_2(C_6H_4)(C_6H_3)CO_2H)$, $[Pb_4(L')_4]{\cdot}5H_2O$ 1 (L' = OOC$(C_3H_7)(C_3N_2)CH_2(C_6H_4)(C_6H_3)COO)$, has been obtained under hydrothermal condition by decarboxylation, and characterized by elemental analysis, IR, TGDTA, and single-crystal X-ray diffraction. Compound 1 possesses a rare two-dimensional upper-lower offset terrace-like layer structure. In 1, crystallographic distinct Pb(II) ion adopts five-coordination geometry, and two lattice water molecules occupy the voids between 2-D layers. Results of solid state fluorescence measurement indicate that the emission band 458 nm may be assigned to $\pi^*-n$ and $\pi^*-\pi$ electronic transitions within the aromatic systems of the ligand L', however, the emission bands centred at 555 nm, 600 nm and 719 nm may be derived from phosphorescent emission ($\lambda_{excitation}$ = 390 nm).

Synthesis and Characterization of Red Electrophosphorescent Polymers Containing Pendant Iridium(III) Complex Moieties

  • Xu, Fei;Mi, Dongbo;Bae, Hong Ryeol;Suh, Min Chul;Yoon, Ung Chan;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2609-2615
    • /
    • 2013
  • A series of fluorene-carbazole copolymers containing the pendant phosphor chromophore $Ir(absn)_2(acac)$ (absn: 2-(1-naphthyl)benzothiazole; acac: acetylacetone) were designed and synthesized via Yamamoto coupling. In the film state, these copolymers exhibited absorption and emission peaks at approximately 389 and 426 nm, respectively, which originated from the fluorene backbone. However, in electroluminescent (EL) devices, a significantly red-shifted emission at approximately 611 nm was observed, which was attributed to the pendant iridium(III) complex. Using these copolymers as a single emission layer, polymer light-emitting devices with ITO/PEDOT:PSS/polymer:DNTPD/TmPyPb/LiF/Al configurations exhibited a saturated red emission at 611 nm. The attached iridium(III) complex had a significant effect on the EL performance. A maximum luminous efficiency of 0.85 cd/A, maximum external quantum efficiency of 0.77, maximum power efficiency of 0.48 lm/W, and maximum luminance of 883 $cd/m^2$ were achieved from a device fabricated with the copolymer containing the iridium(III) complex in a 2% molar ratio.