• Title/Summary/Keyword: Phosphorescent device

Search Result 118, Processing Time 0.024 seconds

Solution-processed electrophosphorescent devices with a thin fluoropolymer at the hole transport interfacial layer

  • Park, Jae-Kyun;Hwang, Gyoung-Seok;Lee, Tae-Woo;Chin, Byung-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.223-227
    • /
    • 2011
  • Electrophosphorescent devices with ionomer-type hole transport layers were investigated. On top of the 3,4-ethylenedioxy thiophene:poly(4-styrene sulfonate) [PEDOT:PSS] structures, fluoropolymer interfacial layers (FPIs) with different side chain lengths were introduced. Both for the PEDOT:PSS/FPI (layered) and PEDOT:PSS (mixed) structures with soluble phosphorescent emitters, the short-side-chain FPIs showed higher efficiency. The difference in the electrical properties of the two FPIs for bipolar (light-emitting) devices was not clear, but the hole-only device clearly showed the favored hole injection at the PEDOT:PSS/FPI structure with a shorter side chain, a copolymer of tetrafluoroethylene and sulfonyl fluoride vinyl ether.

Emission Characteristics of Polymer Blue Organic Light Emitting Devices on the Plastic Substrates (플라스틱 기판을 이용한 고분자 청색 유기발광다이오드의 발광 특성)

  • Jung, Jae-Hoon;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.682-685
    • /
    • 2013
  • We have fabricated blue phosphorescent organic light-emitting devices (OLEDs) on a plastic substrate. The solution coated poly (9-vinylcarbazole) (PVK) host doped with Bis (3,5-difluoro-2-(2-pyridyl)phenyl_(2-carboxypyridyl)irdium(III) (FIrPic) guest molecules was used as an hole transporting emission layer. The device structure was ITO/PVK:FIrpic (50 nm, xwt%)/TAZ 50 nm)/LiF (0.5 nm)/Al (100 nm). The concentration of FIrpic molecule was varied from 1 wt% to 10 wt%. The OLED on plastic substrate exhibited maximum current efficiency of 18 cd/A with 5 wt% FIrpic molecules were doped into the PVK layer.

Analysis of Low Power Consumption AMOLED Displays on Flexible Stainless Steel Substrates

  • Hack, Mike;Hewitt, Richard;Ma, Ray;Brown, Julie J.;Choi, Jae-Won;Cheon, Jun-Hyuk;Kim, Se-Hwan;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.58-61
    • /
    • 2007
  • We present simulations and results to demonstrate the viability of stainless steel foil as a substrate for low power consumption, flexible AMOLED displays. Using organic planarization layers, we achieve very smooth surface properties, resulting in excellent TFT performance, that can be repetitively flexed without significantly affecting device performance. The use of phosphorescent OLEDs enables the design of low power consumption 40" AMOLED displays.

  • PDF

Red Electrophosphorescent Organic Light-emitting Diodes Based on New Iridium Complexes. (새로운 이리듐 화합물을 이용한 적색 인광 유기 발광 다이오드)

  • Gong, Doo-Won;Kim, Jun-Ho;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.73-74
    • /
    • 2006
  • New iridium complexes that have carbonyl group were synthesized and demonstrated various red light emission in organic light-emitting diodes (OLEDs). The maximum luminance of $57000{\sim}15300\;cd/m^2$ at 15 V and the luminance efficiency of 22.8~5.6 cd/A at $20\;mA/cm^2$ were achieved respectively. The peak wavelength of the electroluminescence were at 570~604 nm and the device also showed a stable color chromaticity with various voltages.

  • PDF

Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave (초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석)

  • Yu, Hong-Jeong;Chung, Won-Keun;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.325-329
    • /
    • 2011
  • $Ir(pmb)_{3}$(Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-$C,C^{2'}$ ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of $Ir(pmb)_{3}$. The ultrasonic wave enhanced the reaction yield of $Ir(pmb)_{3}$ because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of $Ir(pmb)_{3}$ was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-$Ir(pmb)_{3}$ which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.

Polymer Phosphorescence Device using a New Green Emitting Ir(III) Complex

  • Lee, Chang-Lyoul;Das, Rupasree Ragini;Noh, Yong-Young;Kim, Jang-Joo
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.6-10
    • /
    • 2002
  • We have synthesized a new green Ir(III) complex fac-tris-(3-methyl-2-phenyl pyridine)iridium(III) $Ir(mpp)_3$ and fabricated phosphorescent polymer light-emitting device using it as a triplet emissive dopant in PVK. $Ir(mpp)_3$ showed absorption centered at 388 nm corresponding to the $^1MLCT$ transition as .evidenced by its extinction coefficient of the order of $10^3{\cdot}$ From the PL and EL spectra of the $Ir(mpp)_3$ doped PVK film, the emission maximum was observed at 523 nm, due to the radiative decay from the $^3MLCT$ state to the ground state, confirming a complete energy transfer from PVK to $Ir(mpp)_3$. The methyl substitution has probably caused a red shift in the absorption and emission spectrum compared to $Ir(mpp)_3$. The device consisting of a 2 % doped PVK furnished 4.5 % external quantum efficiency at 72 $cd/m^2$ (current density of 0.45 $mA/cm^2$ and drive voltage of 13.9 V) and a peak luminance of 25,000 $cd/m^2$ at 23.4 V (494 $mA/cm^2$). This work demonstrates the impact of the presence of a methyl substituent at the 3-position of the pyridyl ring of 2-phenylpyridine on the photophysical and electroluminescence properties.

High-Performance Flexible Organic Light-Emitting Devices using Amorphous Indium Zinc Oxide Anode

  • Kang, Jae-Wook;Jeong, Won-Ik;Kim, Han-Ki;Kim, Do-Geun;Lee, Gun-Hwan;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1425-1428
    • /
    • 2007
  • The amorphous IZO on flexible substrate (PC) shows similar electrical conductivity and optical transmittance with commercial ITO glass even though it was prepared at $<50\;^{\circ}C$. Moreover, it exhibits little resistance change during 5000 bending cycles, demonstrating good mechanical robustness. A green phosphorescent OLED fabricated on amorphous IZO on flexible PC shows maximum external quantum efficiency of ${\eta}_{ext}=13.7\;%$ and power efficiency of ${\eta}_p=32.7\;lm/W$, which are higher than a device fabricated on a commercial ITO on glass (${\eta}_{ext}=12.4%$ and ${\eta}_p=30.1\;lm/W$) and ITO on flexible PC (${\eta}_{ext}=8.5%$ and ${\eta}_p=14.1\;lm/W$).

  • PDF

Color Tuning of OLEDs Using the Ir Complexes of White Emission by Adjusting the Band Gap of Host Materials

  • Seo, Ji-Hyun;Kim, In-June;Seo, Ji-Hoon;Hyung, Gun-Woo;Kim, Young-Sik;Kim, Young-Kwan
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.18-21
    • /
    • 2008
  • We report on white organic light-emitting diodes (WOLEDs) based on single white dopants, $Ir(pq)_2$($F_2$-ppy) and $Ir(F_2-ppy)_2$(pq), where $F_2$-ppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively. The similar phosphorescent lifetime of two ligands lead to luminescence emission in two ligands simultaneously. However, the emission color of the devices was reddish, because the energy was not transferred efficiently from the 4,4,N,N'-dicarbazolebiphenyl (CBP) to the $F_2$-ppy ligand, due to the small band gap of the CBP. Accordingly, we used 1,4-phenylenesis(triphenylsilane) (UGH2) with a large band gap, instead of CBP as the host material. As a result, it was possible to adjust the emission color by the host material. The luminous efficiency of the device with $Ir(F_2-ppy)_2$(pq) doped in UGH2 was about 11 cd/A at 0.06 cd/$m^2$.

Flexible Low Power Consumption Active-Matrix OLED Displays

  • Hack, Mike;Chwang, Anna;Hewitt, Richard;Brown, Julie;Lu, JengPing;Shih, ChinWen;Ho, JackSon;Street, R.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.609-613
    • /
    • 2005
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. In this paper we will outline our progress towards developing such a low power consumption active-matrix flexible OLED ($FOLED^{TM}$) display. Our work in this area is focused on three critical enabling technologies. The first is the development of a high efficiency long-lived phosphorescent OLED ($PHOLED{TM}$) device technology, which has now proven itself to be capable of meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active matrix backplanes, and for this our team are employing poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  • PDF

Effect of Host Materials on Eelectrophosphorescence Properties of PtOEP-doped Organic Light-emitting Diodes

  • Kang, Gi-Wook;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.15-19
    • /
    • 2007
  • We have studied the effect of host materials on the electrophosphorescence properties by comparing three different host materials such as tris(8-hydroxyquinoline)-aluminum (III) $(Alq_3)$, bis(8-hydroxyquinoline)-zinc (II) $(Znq_2)$, and 4,4'-N,N' dicarbazole-biphenyl (CBP) doped with a red-emissive phosphorescent dye, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum (II) (PtOEP). The EL spectra show a strong red emission (peak at 650 nm) from the triplet excited state of PtOEP and a very weak emission from an electron transport layer of $Alq_3$ and a hole transport layer of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD). We find that the triplet exciton lifetime and the quantum efficiency decrease in the order of CBP, $Alq_3$, and $Znq_2$ host materials. The results are interpreted as a poor exciton confinement in $Alq_3$, and $Znq_2$ host compared with in CBP. Therefore, it is very important for the triplet-exciton confinement in the emissive layer for obtaining a high efficiency.