• Title/Summary/Keyword: Phospholipase C beta

Search Result 65, Processing Time 0.026 seconds

Tissue Type Expression of Phospholipase C β3 in Olive Flounder (Paralichthys olivaceus) Following Various Stimulation (다양한 자극에 의한 넙치의 Phospholipase C β3 조직별 발현 분석)

  • WOO, Soo-Ji;LEE, Hyung-Ho;CHUNG, Joon-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1266-1272
    • /
    • 2016
  • Phospholipase C is a key enzyme of signaling pathways hydrolyzed phosphatidylinositol 4,5-bisphosphate to generate 2 second messengers. Among the PLC, $PLC-{\beta}$ subfamily consisted of 4 isoforms, $PLC-{\beta}$ 1~4. Here, we studied the tissue specific expression of $PLC-{\beta}3$ in olive flounder (Paralichthys olivaceus) following external stimulation like lipopolysaccharide (LPS), concanavalin A (ConA) and environmental stress compared with the inflammatory cytokines IL-1b. $PoPLC-{\beta}3$ gene transcripts has the effect in stimulated tissue compared to control. These results provide what we sure to be a important role for $PLC-{\beta}3$ activity in tissue and verify $PLC-{\beta}3$ as potential immune enzyme for signal transduction.

Phospholipase C isozyme들과 조절물질 선별체계

  • 민도식;이영한;서판길;류성호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.63-63
    • /
    • 1993
  • Phospoinositide-specific phospholipase C (PLC)는 세포막의 phosphoinositide를 분해하여 inositol phosphates와 diacylglycerol을 전달하는데 핵심적인 효소이다. PLC는 분자량과 1차구조의 비교에 의하여 type (PLC-$\beta$, ${\gamma}$, $\delta$)로 구분되며, 각 type마다 2-4종의 subtype이 존재하고 PLC isozyme들에 대한 현재가지의 각종 신호 전달 및 조절에 대한 연구를 종합하면: (1) PLC-$\beta$ type은 G-protein과 연결되어 신호를 전달받고, (2) PLC-${\gamma}$ type은growth factor receptor tyrosine kinase에 의하여 인산화 되어 활성화됨으로, 세포의 성장 신호를 전달하며. (3) PLC-$\delta$ type에 대한 신호 전달이나 조절은 밝혀지지 않고 있다.

  • PDF

Isolation and structure elucidation of a catechin glycoside with phospholipase $A_2$ inhibiting activity from Ulmi cortex

  • Park, Sunghyouk;Goo, Yang-Mo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.58-58
    • /
    • 1995
  • 식물에서부터 새로운 소염작용제를 개발하기 위하여 여러식물을 대상으로 염증반응의 초기단계에서 중요한 역할을 하는 것으로 알려진 Phospholipase $A_2$에 저해활성을 갖는 물질을 검색하였고 그 중 강한 억제활성을 보인 유근피에서 유효성분을 분리하였다. 유근피의 에칠 아세테이트 분획에 대하여 실리카겔 크로마토그래피, Sephadex LH-20 크로마토그래피, 분취 박막 크로마토그래피를 수행하여 phenol성 -OH기를 갖는 활성성분인 PSH-II-84-1를 분리하였다. $^1$H-NMR 신호의 양상과 짝지움 상수 값에서 분리된 물질은 (+)-catechin 의 당 유도체로 확인되었다. $^{13}$C-NMR 자료를 분석하여 치환된 당은 D-apiofuranose로 확인되었다. 방향족환의 $^{l3}$C-NMR 신호들은 extended Huekel theory를 응용하여 얻은 net charge 계산 값과 상관시켜 할당하였다. 이상의 구조연구 결과 이 물질은 (+)-catechin-7-0-$\beta$-D-apiofuranoside로 밝혀졌다. (+)-catechin-7-0-$\beta$-D-apiofuranoside의 효소억제활성은 Type II Phospholipase $A_2$에 대하여 $IC_{50}$/이 600$\mu$M이었다.다.

  • PDF

Heat Shock Protein $90{\beta}$ Inhibits Phospholipase $C{\gamma}-1$ Activity in vitro

  • Cho, Sang-Min;Kim, Sung-Kuk;Chang, Jong-Soo
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.419-425
    • /
    • 2006
  • Phospholipase $C-{\gamma}1\;(PLC-{\gamma}1)$ is an important signaling molecule for cell proliferation and differentiation. $PLC-{\gamma}1$ contains two pleckstrin homology (PH) domains, which are responsible for protein-protein interaction and protein-lipid interaction. $PLC-{\gamma}1$ also has two Src homology (SH)2 domains and a SH3 domain, which are responsible for protein- protein interaction. To identity proteins that specifically binds to PH domain of $PLC-{\gamma}1$, we prepared and incubated the glutathione S-transferase(GST)-fused PH domains of $PLC-{\gamma}1$ with COS7 cell lysate. We found that 90 kDa protein specifically binds to PH domain of $PLC-{\gamma}1$. By matrix-assisted laser desorption ionization time of flight-mass spectrometry, the 90 kDa protein revealed to be heat shock protein (Hsp) $90{\beta}$. Hsp $90{\beta}$ is a molecular chaperone that stabilizes and facilitates the folding of proteins that are involved in cell signaling, including receptors for steroids hormones and a variety of protein kinases. To know whether Hsp $90{\beta}$ affects on $PLC-{\gamma}1$ activity, we performed $PIP_2$ hydrolyzing activity of $PLC-{\gamma}1$ in the presence of purified Hsp $90{\beta}$ in vitro. Our results show that the Hsp $90{\beta}$ dose-dependently inhibits the enzymatic activity of $PLC-{\gamma}1$ and further suggest that Hsp $90{\beta}$ regulates cell growth and differentiation via regulation of $PLC-{\gamma}1$ activity.

  • PDF

Phospholipase $A_2$ excreted from the cells of hyperthermophilic microbes (초호열성균이 생성하는 phospholipase $A_2$에 관한 연구)

  • Joh, Yong-Goe;Woo, Hyo-Kyeng;Kim, Yeon-Sim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.263-271
    • /
    • 1999
  • We checked the presence of phospholipase $A_2(PLA)_2$ which could split the ester bond at the position 2 in the glycerol backbone of glycerophospholipids, in the cells of hyperthermophiles of Pyrococcus horikoshii and Sulfolobus acidocaldarius. The results obtained are as follows; (1). Pyrococcus horikoshii cells were grown in obligate anaerobic conditions at $95^{\circ}C$ and they needed sulfur as energy source instead of oxygen, while Sulfolobus acidocaldarius species grew well in the aerobic medium (pH 2.5) containing yeast and sucrose at $75^{\circ}C$. (2). Pyrococcus horikoshii cells produced phospholipase $A_2$ in the cell culture media although this species did not show lipase activity at least in the pH range of 1.5 ${\sim}$ 3.5. Sulfolobus acidocaldarius cells produced lipase hydrolyzing triacylglycerols such as triolein, but did not split any kind of phospholipids used as substates. (3). The compound of 1-decanoyl-2-(p-nitrophenylglutaryl) phosphatidylcholine was not suitable for a substrate in this experiment, though frequently used as a subtrate for checking presence of phospholipase $A_2$, for its decomposi-tion in this experiment. The L-${\alpha}$-phosphatidylcholine-${\beta}$-[N-7-nitrobenz-2-oxa-1, 3-diazol]aminohexanoyl-${\gamma}$-hexadecanoyl labelled with a fluorescent material, did not show any migration of acyl chains in the molecule during the reaction with phospholipase $A_2$ under a hot condition. (4). Phospholipase $A_2$ in the cells of Pyrococcus horikoshii, showed the optimum activity at $pH6.7{\sim}7.2$ and $95{\sim}105^{\circ}C$, respectively, and was activated by addition of calcium chloride solution. Andthe phospholipase $A_2$ specifically hydrolyzed glycero-phospholipids such as phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl inositol, but could not split phospholipid containing ether bonds in the molecule such as DL -${\alpha}$-phosphatidylcholine-${\beta}$-palmitoyl-${\gamma}$-O-hexadecyl, DL-${\alpha}$-phosphati- dylcholine-${\beta}$- oleoyl-${\gamma}$-O-hexadecyl, DL-phosphatidylcholine-dihexadecyl.

Expression of phospholipase C β1 in olive flounder (Paralichthys olivaceus) following external stress stimulation

  • Woo, Soo Ji;Jang, Hee Young;Lee, Hyung Ho;Chung, Joon Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.18.1-18.10
    • /
    • 2016
  • In this study, to clarify the function of $PoPLC-{\beta}1$, in response to stress challenge, we examined the $PoPLC-{\beta}1$ expression pattern in response to external stress (pathogen-associated molecular pathogen challenge and environmental challenge including temperature and salinity). $PoPLC-{\beta}1$ expression analysis of tissue from olive flounder showed that the messenger RNA (mRNA) was predominantly expressed in the brain, heart, eye, liver, spleen, and stomach. We also tested the mRNA expression of the $PoPLC-{\beta}1$ in the spleen and kidney of olive flounder by RT-PCR and real-time PCR following stimulation with lipopolysaccharide (LPS), concanavalin A (ConA), or polyinosinic:polycytidylic acid (PolyI:C) and compared with the inflammatory cytokines IL-1b and IL-6 in the stimulated flounder tissues. Each of the spleen and kidney and mRNA transcripts of $PoPLC-{\beta}1$ were increased 30- and 10-fold than normal tissue at 1-6 h post injection (HPI) with PolyI:C when the expression of $PoPLC-{\beta}1$ transcript was similar to LPS and ConA. We also tested the expression of $PoPLC-{\beta}1$ in response to temperature and salinity stress. The expression of $PoPLC-{\beta}1$ also was affected by temperature and salinity stress. Our results provide clear evidence that the olive flounder $PLC-{\beta}1$ signal pathways may play a critical role in immune function at the cellular level and in inflammation reactions. In addition, $PLC-{\beta}1$ appears to act as an oxidative-stress suppressor to prevent cell damage in fish.

Distributional Patterns of Phospholipase C Isozymes in Heart and Brain of Spontaneously Hypertensive and Normotensive Rats

  • Choi, Ji-Woong;Cho, Young-Jin;Cha, Seok-Ho;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.385-392
    • /
    • 1997
  • The phospholipase C (PLC)-mediated intracellular signal transduction pathway is considered to be involved in the regulation of blood pressure. However, little information is available concerning the distributional and functional significance of PLC in the genetic hypertensive rats. As the first step of knowing the role of PLC on hypertension, we investigated the distribution of 6 PLC isozymes $(PLC-{\beta}1,\;-{\beta}3,\;-{\beta}4,\;-{\gamma}1,\;-{\gamma}2\;and\;-{\delta}1)$ in the heart and brain, which are concerned with hypertension, in the normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR) using the western blotting and immunocytochemistry. The immunoreactivities of PLC isozymes in brain were detected, but there were no distributional and quantitative differences between the WKY and SHR. In the heart, but the immunoreactivities to $PLC-{\beta}1$ and $-{\gamma}2$ in the SHR were higher than those in WKY. In immunocytochemistry to confirm these western blotting data, $PLC-{\beta}1$ and $-{\gamma}2$ were localized in cardiac myocytes and the intensities of immunoreactivity in SHR were stronger than that in WKY. These results suggest that $PLC-{\beta}1$ and $-{\gamma}2$ would have possibility to concern with the establishment of spontaneous hypertension.

  • PDF

Inhibition of the Activity of Phosphoinositide-Specific Phospholipase C Isozymes by Antipsychotics and Antidepressants

  • Joo, Yeon-Ho;Park, Eun-Sil;Park, Joo-Bae;Suh, Pann-Ghill;Kim, Yong-Sik;Ryu, Sung-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.121-124
    • /
    • 1993
  • To elucidate the effect of antipsychotics and antidepressants on phosphoinositide(Pl) second massenger system, we studied the dose-dependent inhibition of the phosphoinositide-specific phospholipase C(PLC) isozymes, ${\beta}_1,\;{\gamma}_1$ and${\delta}_1,$ by fluphenazine and haloperidol as antipsychotics, and amitriptyline, maprotiline and mianserin as antidepressants. All the antipsychotics and antidepressants tested showed inhibition on at least one of the PLC isozymes with $IC_{50}$ at the concentration between 25 and $250 {\mu}M.$ Maprotiline, mianserin and amitriptyline inhibited 80 to 90% of the activities of all three PLC isozymes at the concentration of $250{\mu}M,$ while haloperidol and fluphenazine inhibited PLC ${\beta}_1$ and${\gamma}_1$ But baclofen didn't inhibit any PLC isozyme. These results suggested that PLC isozymes are inhibited by antipsychotics and antidepessants even though the concentration is high, and these drugs may affect PI signal transduction system by direct inhibition of PLC isozymes.

  • PDF

Differential Coupling of G$\alpha$q Family of G-protein to Muscarinic $M_1$ Receptor and Neurokinin-2-Receptor

  • Lee, Chang-Ho;Shin, In-Chul;Kang, Ju-Seop;Koh, Hyun-Chul;Ha, Ji-Hee;Min, Chul-Ki
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.423-428
    • /
    • 1998
  • The ligand binding signals to a wide variety of seven transmembrane cell surface receptors are transduced into intracellular signals through heterotrimeric G-proteins. Recently, there have been reports which show diverse coupling patterns of ligand-activated receptors to the members of Gq family $\alpha$ subunits. In order to shed some light on these complex signal processing networks, interactions between G$\alpha$q family of G protein and neurokinin-2 receptor as well as muscarinic M$_{1}$ receptor, which are considered to be new thearpeutic targets in asthma, were studied. Using washed membranes from Cos-7 cells co-transfected with different G.alpha.q and receptor cDNAs, the receptors were stimulated with various concentrations of carbachol and neurokinin A and the agonist-dependent release of [$^3H$]inositol phosphates through phospholipase C beta-1 activation was measured. Differential coupling of Gaq family of G-protein to muscarinic M$_{1}$ receptor and neurokinin-2 receptor was observed. The neurokinin-2 receptor shows a ligand-mediated response in membranes co-transfected with G$\alpha$q, G$\alpha$11 and G$\alpha$14 but not G$\alpha$16 and the ability of the muscarinic $M_1$ receptor to activate phospholipase C through G$\alpha$/11 but not G$\alpha$14 and G$\alpha$16 was demonstrated. Clearly G$\alpha$/11 can couple $\M_1$ and neurokinin-2 receptor to activate phospholipase C. But, there are differences in the relative coupling of the G$\alpha$14 and G$\alpha$16 subunits to these receptors.

  • PDF

Expression and Possible Role of Phospholipase C $\beta1$ and $\gamma1$ in Mouse Oocyte Maturation and Preimplantation Embryo Development (생쥐 난자의 성숙과 착상전 배발생에서의 Phospholipase C $\beta1$$\gamma1$의 발현 및 기능)

  • Lee, Young-Hyun;Geum, Dong-Ho;Shim, Chan-Seob;Suh, Phan-Gil;Kim, Kyung-Jin
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.9-20
    • /
    • 1998
  • It has been wel known that phospholipase C(PLC) plays an important role in the intracellular signaling in a variety of cell types. However, involvement of PLC in mouse oocyte maturation and preimplantation embryo development remains unknown. The present study examined the expression patterns of the mouse PLC \beta 1 and \gamma 1 during oocyte maturatio and preimplantation embryo development study examined the expression patterns of the mouse PLC \beta 1 and \gamma 1 during oocyte maturation and preimplantation embryo development by the competitive reverse transcription-polymerase chain reaction (RT-PCR method). PLC \gamma 1 mRNA (0.1 fg) was readily detected in germinal vesicle (GV)-stage oocyte and its level was reduced as meiotic resumption proceeded. PLC-\beta 1 mRNA (<0.1 fg) as detected at low level at GV-stage oocytes and scarcely detected at germinal vescle breakdown (GVBD)-stage oocytes. After fertilization, both PLC \beta 1 and \gamma 1 mRNA levels began to increase at morula-stage embryos (0.2 fg) and were more prominent in blastocyst-stage embryos(1 fg). to elucidate the possible involvement of PLC via protein kinase C(PKC) pathway during oocyte maturation and preimplantation embryo development , the effects of sphingosine (PKC inhibitor), sn-$diC_{8}$(PKC activator) anc U73122 (PLC ingibitor) were examined. Treatment of GV-stage oocytes with sphingosine (20 \mu M) facilitated the meiotic resuption by 10-20 over the control within 1 h as judged by GVBD, whereas U73122 failed to show any significant effect. U73122 (10 \mu M) effectively blocked the compaction of morula, while sn-$diC_{8}$(50 \mu M). In summary, the present study shows that the mouse PLC \beta 1 and \gamma 1 are expressed in a developmental stage-specific manner and PLC-PKC pathway may be involved in early preimplantation embryo development.

  • PDF