• Title/Summary/Keyword: Phosphoinositide-specific phospholipase C$\dalta$

Search Result 1, Processing Time 0.014 seconds

Regulation properties of phospholipase C$\delta$ cloned from Misgurnus mizolepis

  • Kim, Na-Young;Ahn, Sang-Jung;Jeon, Soo-Jin;Seo, Jung-Soo;Kim, Moo-Sang;Lee, Sang-Hwan;Je, Ju-Eun;Sung, Ji-Hea;Lee, Hyung-Ho;Lee, June-Woo;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.20 no.2
    • /
    • pp.119-127
    • /
    • 2007
  • Phosphoinositide-specific phospholipase Cδ (PLCδ) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to characterize the catalytic and regulatory properties of the PLCδ of Misgurnus mizolepis (ML-PLCδ). The ML-PLCδ gene was cloned and expressed under according to the method of the previous report (Kim et al., 2004), and its recombinant protein was purified by successive chromatography using Ni2+-NTA affinity column. The recombinant ML-PLCδ showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol (PI). Its activity was absolutely Ca2+-dependence, which was similar to mammalian PLCδ isozymes. The Ca2+ concentration yielding maximal activation of ML-PLCδ was 100 μM. However, the activity was decreased interestingly by a polyamine, such as spermine and spermidine. In vitro assay using cholate-micelle cell, ML-PLCδ activity was inhibited in dose-dependent manner by sphinogosine but increased by phosphocholine . In the lipid-binding assay, ML-PLCδ was strongly bound to LPA, PI(3)P, PI(4)P, PI(5)P, PI(3,5)P2, PI(4,5)P2, PI(3,4,5)P3 and PA, but it showed the low affinity to S1P, PI(3,4)P2 and PS. Taken together our results, it is suggested that the general catalytic and regulatory properties of ML-PLCδ are similar with those of mammalian PLCδ1 isozymes, but the N-terminal extended piscine phospholipase Cδ1 (ML-PLCδ) might reflect some distinctions in regulatory properties and inositol-lipid binding specificity between piscine ML-PLCδ and mammalian PLCδ isozymes.