• Title/Summary/Keyword: Phosphate solubilizing microbes

Search Result 7, Processing Time 0.022 seconds

Effects of Amendments on the Phosphate-solubilizing Bacteria in Rice Paddy Soils (논 토양 인산가용화세균에 대한 개량제 시용효과)

  • Suh, Jang-Sun;Noh, Hyung-Jun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.342-347
    • /
    • 2008
  • Phosphate soubilized by microbes can be easily absorbed by plant as the element diffuses into soil solution. The microbes related to phosphate solubilizing activity are affected by the soil amendments such as rice straw compost, and lime. This study was performed to evaluate the effect of amendments to phosphate solubilizer in rice paddy soils. Available phosphate concentration was increased with the ratio of phosphate-solubilizing bacteria to aerobic bacteria in the rice paddy soils. The ratio was high in the plots applied with lime, silicate, and rice straw compost. Phosphate-solubilizing bacteria isolated from the soil were Aquasipirillum, Arthrobacter, Bacillus, Flavobacterium, Micrococcus and Micromonospora, Pseudomonas species. The highest dominant bacterial species was Pseudomonas, and Bacillus was followed.

Impact of Surface Fire on the Dynamics of$N_2$- Fixing and P - Solubilizing Microbial Population in Natural Grassland Soils, Southern India

  • Manian, S.;S. Paulsamy;K. Senthilkumar;Kil, Bong-Seop
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.93-100
    • /
    • 2002
  • Dynamics of certain $N_2$fixing bacteria such as Rhizobium, Azospirillum and Azotobactor, nodule number in dominant legume, Atylosia trinervia, P-solubilizing bacteria, actinomycetes and fungi were studied in unburned and burned site of natural grassland, southern India. Population of $N_2$- fixing bacteria, P-solubilizing bacteria, fungi and nodule number in legume increased significantly in burned sites. On the other hand, the actinomycetes population remained unchanged. Thirty six species of fungi with tricalcium phosphate solubilizing ability were recorded. The most efficient P-solubilizing fungi recognised in the soils of the study sites are Absidia ramosa, Gongronella butlerii, Mortieralla spinosa, Mucor racemosus, Rhizopus nigricans, R. stolonifer, R. oryzae, Aspergillus fumigatus, A. nidulans, A. niger Theilavia terricola and Cheatomium lunasporium.

  • PDF

Impact of Surface Fire on the Dynamics of N2- Fixing and P - Solubilizing Microbial Population in Natural Grassland Soils, Southern India

  • Manian, S;Paulsamy, S.;Senthilkumar, K.;Kil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • Dynamics of certain $N_2$ fixing bacteria such as Rhizobium, Azospirillum and Azotobactor, nodule number in dominant legume, Atylosia trinervia, P-solubilizing bacteria, actinomycetes and fungi were studied in unburned and burned site of natural grassland, southern India. Population of $N_2$ - fixing bacteria, P-solubilizing bacteria, fungi and nodule number in legume increased significantly in burned sites. On the other hand, the actino-mycetes population remained unchanged. Thirty six species of fungi with tricalcium phosphate solubilizing ability were recorded. The most efficient P-solubilizing fungi recognised in the soils of the study sites are Absidia ramosa, Gongronella butlerii, Mortieralla spinosa, Mucor racemosus, Rhizopus nigricans, R. stolonifer, R. oryzae, Aspergillus fumigatus, A. nidulans, A. niger, Theilavia terricola and Cheatomium lunasporium.

Effect of Phosphate Solubilizing Fungi on P Uptake and Growth of Tabacco in Rock Phosphate Applied Soil (인광석 처리 토양에서 담배의 인산 흡수와 생육에 미치는 인산 가용화균의 효과)

  • Park, Myung-Su;Singvilay, Olayvahn;Seok, Yeong-Seon;Chung, Jong-Bae;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.233-238
    • /
    • 2003
  • The effect of phosphate solubilizing microbes (PSM) on plant P uptake and growth in rock phosphate applied soil was tested under a greenhouse condition. Tobacco plants were grown in nonsterilized soil inoculated with Penicillium oxalicum CBPS-3F-Tsa with or without rock phosphate application as P fertilizer. Phosphorus concentration in tobacco plants was increased by the application of rock phosphate, while inoculation of soil with fungi further significantly increased P concentration in tobacco plants compared with the noninoculated treatments. Phosphorus uptake by tobacco plants was also increased by the application of rock phosphate and PSM inoculation, and the significant comparison has been made with single rock phosphate treatment. Growth of tobacco plant was also significantly increased in the treatments receiving rock phosphate, while the combined application of rock phosphate and PSM further increased plant growth. It was concluded that the positive effect of PSM inoculation on plant growth was closely related in plant P content and uptake. These results suggest that Penicillium oxalicum CBPS-3F-Tsa could solubilize insoluble soil phosphates and rock phosphate which can promote growth and P uptake of tobacco plants.

Enhanced Phytoremediation by Echinochloa crus-galli in Arsenic Contaminated Soil in the Vicinity of the Abandoned Mine (폐광지역 비소오염 토양에 대한 피(Echinochloa crus-galli)를 이용한 보강된 식물상복원공법)

  • Park, Ji-Yeon;Kim, Ju-Yong;Lee, Byung-Tae;Kim, Kyoung-Woong;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • In order to deal with the problem that phytoremediation takes long time in achieving the practical effect, the enhanced phytoremediation by Barnyard grass (Echinochloa crus-galli) was conducted. In addition, we examined the synergistic effect by adding PSM (phosphate -solubilizing microbes) and EDTA (ethylenediaminetetraacetic acid) to the arsenic contaminated soil in the vicinity of the abandoned mine. The removal efficiency of arsenic in the site with PSM application increased about 16% when compared to control site, which was due to increase of plant biomass. The EDTA has been successfully utilized in respect of enhanced mobility and solubility of arsenic in the soil. As a result, BF (bioaccumulation factor) significantly increased but the inhibition of plant growth resulted in 20% reduction of arsenic removal efficiency. The application of PSM and EDTA may enhance the efficiency of phytoremediation. However, the time and method of EDTA application should be further examined to reach the maximum removal efficiency.

Phytoextraction of Heavy Metals Induced by Bioaugmentation of a Phosphate Solubilizing Bacterium

  • Arunakumara, K.K.I.U.;Walpola, Buddhi Charana;Song, Jun-Seob;Shin, Min-Jung;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.220-230
    • /
    • 2014
  • BACKGROUND: Excessive metals in the soil have become one of the most significant environmental problems. Phytoremediation has received considerable attention as a method for restoring the contaminated soils. The microbes having remarkable metal tolerance and plant growth-promoting abilities could also play a significant role in remediation of metal-contaminated soils, because bioaugmentation with such microbes could promote phytoextraction of metals. Therefore, the present study was focused on evaluating the phytoextraction of heavy metals (Co, Pb and Zn) in Helianthus annuus (sunflower) induced by bioaugmentation of a phosphate solubilizing bacterium. METHODS AND RESULTS: A phosphate solubilizing bacterium was isolated from metal-contaminated soils based on the greater halo size (>3 mm) with solid NBRIP agar medium containing 10 g glucose, 5 g $Ca_3(PO_4)_2$, 5 g $MgCl_2{\cdot}6H_2O$, 0.25 g $MgSO_4.7H_2O$, 0.2 g KCl, 0.1 g $(NH_4)_2SO_4$ in 1 L distilled water. Isolated bacterial strain was assessed for their resistance to heavy metals; $CoCl_2.6H_2O$, $2PbCO_3.Pb(OH)_2$, and $ZnCl_2$ at various concentrations ranging from $100-400{\mu}g/mL$ (Co, Pb and Zn) using the agar dilution method. A pot experiment was conducted with aqueous solutions of different heavy metals (Co, Pb and Zn) to assess the effect of bacterial strain on growth and metal uptake by Helianthus annuus (sunflower). The impact of bacterial inoculation on the mobility of metals in soil was investigated under laboratory conditions with 50 mL scaled polypropylene centrifuge tubes. The metal contents in the filtrate of plant extracts were determined using an atomic absorption spectrophotometer (Perkinelmer, Aanalyst 800, USA). CONCLUSION: Inoculation with Enterobacter ludwigii PSB 28 resulted in increased shoot and root biomass and enhanced accumulation of Co, Pb and Zn in Helianthus annuus plants. The strain was found to be capable of promoting metal translocation from the roots to the shoots of H. annuus. Therefore, Enterobacter ludwigii PSB 28 could be identified as an effective promoter of phytoextraction of Co, Pb and Zn from metal-contaminated soils.

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field (경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향)

  • An, Chang-Hwan;Lim, Jong-Hui;Kim, Yo-Hwan;Jung, Byung-Kwon;Kim, Jin-Won;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.