• Title/Summary/Keyword: Phosphate concentration

Search Result 1,238, Processing Time 0.027 seconds

Iontophoretic Delivery of Vitamine C 2-Phosphate (이온토포레시스를 이용한 2-인산 비타민 C의 피부투과)

  • Kim, Su-Youn;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.201-207
    • /
    • 2004
  • In order to develop an optimum formulation for iontophoretic flux of vitamine C 2-phosphate (VCP), we have prepared three different hydrogels containing VCP, using carbopol, HPMC and poloxamer, and iontophoretic flux through hairless mouse skin from these hydrogels was carried out. Drug stability in phosphate buffer (PBS) solution (pH 7.4) with and without current application was studied. The effect of various factors, such as drug concentration, current density, and current profile on skin flux was also investigated. Stability study indicated that VCP in PBS (pH 7.4) solution was stable under the experimental condition, irrespective of the presence of current. Cathodal delivery increased the flux markedly, whereas the anodal and passive flux was negligible. Thus, cathodal delivery was used in all experiments. Flux increased as the drug concentration (2.5, 5.0, 7.5%) and current density $(0.2,\;0.4,\;0.6\;mA/cm^2)$ increased. Pulsed application of the current showed lower flux than constant current application. The results obtained suggest that VCP can be delivered into the skin and the amount delivered can be controlled by varying hydrogel, current density, drug concentration and current application profile.

Effects of Organic Acids on Availability of Phosphate and Growth of Corn in Phosphate and Salts Accumulated Soil

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.265-270
    • /
    • 2016
  • Accumulated Phosphate can be released by ligand exchange reaction of organic acids. The objective of this study was to evaluate effects of the organic acids on the availability of phosphate and the growth of crop in phosphate and salts accumulated soil. Soil samples were collected from farmer's plastic film house. Available phosphate and electrical conductivity of soil were $3,005mg\;kg^{-1}$ and $16.63mg\;kg^{-1}$ which were 6 and 8 times higher than the optimum range of soil for crop growth, respectively. Corns were cultivated in pots for 2 months. Treatments were no treatment (control), phosphate fertilizer (P), citric acid (CA) 1, 5, 10 mM, and oxalic acid (OA) 1, 5, 10 mM. Water soluble phosphorus, available phosphate, corn growth and uptake were determined after cultivation. Results showed that organic acids increased water soluble phosphorus and available phosphate. For the level of 10 mM, the order of effectiveness of organic acids for water soluble P was citric acid (44%) > oxalic acid (32%). Height and dry weight of corns were increased significantly by the treatment of citric acid 1 and 5 mM. Also, corn absorbed more phosphorus, nitrogen, potassium, calcium and magnesium in the treatment of citric acid 1 mM than these of other treatments. Even though phosphate availability of soil was enhanced by addition of citric acid 10 mM, the growth of corns decreased because high concentration of citric acid caused salt damage by increasement of electrical conductivity. Thus, the citric acid of 1 mM has the potential to improve the availability of phosphate and the healthy growth of corns.

Isolation and Characterization of a Novel Bacterium, Bacillus subtilis HR-1019, with Insoluble Phosphates Solubilizing Activity (인산가용화 활성을 갖는 바실러스 서브틸리스 HR-1019 분리와 특성)

  • Lee, Yong-Suk;Park, Dong-Ju;Kim, Jae Hoon;Kim, Hyeong Seok;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.242-248
    • /
    • 2013
  • The objective of this study was to develop a mineral phosphate-solubilizing bacterium as a biofertilizer. A mineral phosphate-solubilizing bacterium HR-1019 was isolated from cultivated soils. It was identified as Bacillus subtilis by 16S rDNA analysis. The phosphate-solubilizing activities of the HR-1019 strain against three types of insoluble phosphate, hydroxyapatite, tri-calcium phosphate, and aluminum phosphate were quantitatively determined. When 5% of glucose concentration was used as a carbon source, the strain showed marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to pH drop in the culture solution of the strain. The pathogenic activity and antifungal effects of the HR-1019 strain were measured inclear zones formed in PDA media.

Ethanol Production by a New Method of Alginate-Immobilization (새로운 Alginate 고정화 방법에 의한 에탄올 생산)

  • Kim, Eun-Young;Kim, Seung-Wook;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.373-380
    • /
    • 1993
  • When the cells of yeast K35 were immobilized in Ca-alginate gel, cell concentration and viability decreased as alginate concentration increased. Considering the results, 2% (w/v) Ca-alginate concentration would be suitable. Among various concentrations of additives and cross-lin-king agent, the addition of 1.67% (w/v) of bentonite together with 0.33% (v/v) of glutaraldehyde (ABG bead) resulted in the highest ethanol production of 1.8%(w/v), using YPD medium containing 2% glucose. ABG bead seemed to be more resistant to phosphate ion than Ca-alginate bead. 0.33%(w/v) of phosphate was a proper concentration for the ethanol production by ABG bead. Scanning electron microscopic observation depicted that the immobilized cells on the bead surface were coated by alginate gel and that the cells in the internal bead were cross-linked with alginate matrix. When repeated-batch culture was performed with ABG bead for 40 days in a packed-bed reactor, ethanol concentration of about 90~110 g/l-gel was maintained. Cell viability was maintained around 70%, and outgrowing cell concentration was below 6.3% of total cell concentration. Consequently, the results showed that ABG head was a potential carrier for continuous production of ethanol compared to conventional Ca-alginate bead.

  • PDF

The Effect of Salviae Radix on Oxidat-Inhibition of Phosphate Uptake in Renal Proximal Tubular Cells (단삼약침액(丹蔘藥鍼液)이 신장(腎臟) 근위세뇨관세포(近位細尿管細胞)에서 산화제(酸化劑)에 의한 인산(燐酸)의 이동억제(移動抑制)에 미치는 영향(影響))

  • Lee, Ho-Dong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Song, Choon-Ho;Ahn, Chang-Beohm
    • Journal of Acupuncture Research
    • /
    • v.17 no.3
    • /
    • pp.208-218
    • /
    • 2000
  • This study was undertaken to determine if Salviae Radix (SR) exerts protective effect against oxidant-induced inhibition of phosphate uptake in renal proximal tubular cells. Membrane transport function and cell death were evaluated by measuring phosphate uptake and trypan blue exclusion, respectively, in opossum kidney (OK) cells, an established proximal tubular cell line. $H_2O_2$ was used as a model oxidant. $H_2O_2$ inhibited the phosphate uptake in a dose-dependent manner over the concentration range of 0.1-0.5 mM. Similar fashion was observed in cell death. However, the phosphate uptake was more vulnerable to $H_2O_2$ than cell death, suggesting that $H_2O_2$-induced inhibition of phosphate uptake is not totally attributed to cell death. Decreasedphosphate uptake was associated with ATP depletion and inhibition of $Na^+$-pump activity as determined by direct inhibition of $N^+-K^+$-ATPase activity. When cells were treated with $H_2O_2$ in the presence of 0.05% SR, the inhibition of phosphate uptake and cell death induced by $H_2O_2$ was significantly attenuated. SR restored ATP depletion and decreased $Na^+-K^+$-ATPase activity, and this is likely responsible for the protective effect of SR on decreased phosphate uptake. The protective effect of SR was similar to the $H_2O_2$ scavenger catalase. SR reacts directly with $H_2O_2$ to reduce the effective concentration of the oxidant. The iron chelator deferoxamine prevented the inhibition of phosphate uptake and cell death induced by $H_2O_2$, suggesting that $H_2O_2$-induced cell injury is resulted from an iron-dependent mechanism. These results indicate that SR exerts the protective effect against $H_2O_2$-induced inhibition of phosphate uptake by reacting directly with $H_2O_2$ like the $H_2O_2$scavenger enzyme catalase, in OK cells. However, the underlying mechanism remains to be explored.

  • PDF

Optimum Semi-Continuous Cultivation of Chlorella sp. FC-21 for Production of Biomass: Light Emitting Diodes as a Light Source and High Concentrations of Nitrogen and Phosphate in Culture Media (지속적 바이오매스 생산을 위한 클로렐라 반연속 배양 연구: 발광다이오드(Light Emitting Diode) 광원 및 고농도 인과 질소를 함유한 배지 사용 효과를 중심으로 한 연구)

  • Choi, Boram;Lim, Junhyuk;Lee, Jaekeun;Lee, Taeyoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.523-527
    • /
    • 2012
  • This study was performed to determine optimum conditions of semi-continuous cultivation of chlorella sp. FC-21 cultivated under red light emitting diode (LED). Semi-continuous cultivation was conducted using red LED because red LED was found to be the best light source for chlorella sp. FC-21. During cultivation, phosphate and nitrogen were quickly diminished where cell concentration of chlorella was inversely proportional to the concentrations of phosphate and nitrogen in culture solution. To increase the period of dilution of culture solution, additional amounts of phosphate and nitrogen were inserted in the culture solution to increase the concentrations of phosphate and nitrogen. The cell concentrations of chlorella increased in the modified culture, but cell diameter was diminished as the dilution of culture was periodically conducted. When considered the cell concentration and cell diameter during the cultivation, amount of biomass produced was maintained constant.

Flotation-Concentration of Trace Phosphate Ion in Water Samples by $La(OH)_3$ Coprecipitation ($La(OH)_3$ 공침에 의한 물시료 중 흔적량 인산이온의 부선 농축)

  • Kim, Young-Sang;Park, Sang-Wan;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.425-431
    • /
    • 1992
  • The concentration and determination of trace phosphate ion was studied by $La(OH)_3$ coprecipitaiton. Phosphate ions in 1.0L samples were coprecipitated with lanthanium hydroxide at pH 9.5 adjusted with ammonia solution. The precipitates were floated with the aid of mixed surfactant(1:8 sodium oleate/sodium dodecyl sulfate) and nitrogen gas bubbles. The floated precipitate was collected in suction flask from the solution. The precipitate were washed with dil. ammonia solution and dissolved in sulfuric acid. The phosphate ion in the concentrated solution was finally determinated by UV/VIS spectrophotometry using the molybdenium blue method. The proposed method could be applied to the determination of phosphate ion in tap water and river water.

  • PDF

Changes in Phosphate Transporter Activity Evaluated by Phosphonoformic Acid Binding in Cadmium-Exposed Renal Brush-Border Membranes

  • Chung, Jin-Mo;Ahn, Do-Whan;Kim, Kyoung-Ryong;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.513-519
    • /
    • 1999
  • Direct exposure of renal tubular brush-border membranes (BBM) to free cadmium (Cd) causes a reduction in phosphate (Pi) transport capacity. Biochemical mechanism of this reduction was investigated in the present study. Renal proximal tubular brush-border membrane vesicles (BBMV) were isolated from rabbit kidney outer cortex by Mg precipitation method. Vesicles were exposed to $50{\sim}200\;{\mu}M\;CdCl_2$ for 30 min, then the phosphate transporter activity was determined. The range of Cd concentration employed in this study was comparable to that of the unbound Cd documented in renal cortical tissues of Cd-exposed animals at the time of onset of renal dysfunction. The rate of sodium-dependent phosphate transport $(Na^+-Pi\;cotransport)$ by BBMV was determined by $^{32}P-Iabeled$ inorganic phosphate uptake, and the number of $Na^+-Pi$ cotransporters in the BBM was assessed by Pi-protectable $^{14}C-labeled$ phosphonoformic acid $([^{14}C]PFA)$ binding. The exposure of BBMV to Cd decreased the $Na^+-Pi$ cotransport activity in proportion to the Cd concentration in the preincubation medium, but it showed no apparent effect on the Pi-protectable PFA binding. These results indicate that an interaction of renal BBM with free Cd induces a reduction in $Na^+-Pi$ cotransport activity without altering the carrier density in the membrane. This, in turn, suggest that the suppression of phosphate transport capacity $(V_{max})$ observed in Cd-treated renal BBM is due to a reduction in $Na^+-Pi$ translocation by existing carriers, possibly by Cd-induced fall in membrane fluidity.

  • PDF

Modelling and packed bed column studies on adsorptive removal of phosphate from aqueous solutions by a mixture of ground burnt patties and red soil

  • Rout, Prangya R.;Dash, Rajesh R.;Bhunia, Puspendu
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.231-251
    • /
    • 2014
  • The present study examines the phosphate adsorption potential and behavior of mixture of Ground Burnt Patties (GBP), a solid waste generated from cooking fuel used in earthen stoves and Red Soil (RS), a natural substance in fixed bed column mode operation. The characterization of adsorbent was done by Proton Induced X-ray Emission (PIXE), and Proton Induced ${\gamma}$-ray Emission (PIGE) methods. The FTIR spectroscopy of spent adsorbent reveals the presence of absorbance peak at $1127cm^{-1}$ which appears due to P = O stretching, thus confirming phosphate adsorption. The effects of bed height (10, 15 and 20 cm), flow rate (2.5, 5 and 7.5 mL/min) and initial phosphate concentration (5 and 15 mg/L) on breakthrough curves were explored. Both the breakthrough and exhaustion time increased with increase in bed depth, decrease in flow rate and influent concentration. Thomas model, Yoon-Nelson model and Modified Dose Response model were used to fit the column adsorption data using nonlinear regression analysis while Bed Depth Service Time model followed linear regression analysis under different experimental condition to evaluate model parameters that are useful in scale up of the process. The values of correlation coefficient ($R^2$) and the Sum of Square Error (SSE) revealed the Modified Dose Response model as the best fitted model to the experimental data. The adsorbent mixture responded effectively to the desorption and reusability experiment. The results of this finding advocated that mixture of GBP and RS can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution.

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties (인산염 농도에 따른 물성 변화로 발생하는 황색포도상구균 바이오필름 제거 현상)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.361-368
    • /
    • 2021
  • The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.