• 제목/요약/키워드: Phosphate concentration

검색결과 1,238건 처리시간 0.026초

영양염제거에서 해수 및 해수염에 관한 비교연구 (A Comparative Study on the Use of Seawater and Sea Salt in Nutrient Elimination)

  • ;김우항
    • 해양환경안전학회지
    • /
    • 제22권7호
    • /
    • pp.829-835
    • /
    • 2016
  • 부영양화를 일으키는 대표적인 영양물질인 질소와 인을 제거하기 위하여 많은 연구들이 진행되어오고 있다. 본 연구에서는 질소와 인을 제거하기 위하여 해수 및 해수염에 존재하는 마그네슘과 칼슘을 사용하여 스트루바이트와 수산화인회석을 만들어 침전을 시켰다. 실험의 목적은 해수와 해수염을 사용하여 pH와 농도의 변화에 따른 영양염의 제거율을 비교평가 하였다. 하수의 실험조건에서 해수를 사용한 결과 인의 제거율은 90 %, 질소의 제거율은 50 %로 나타났다. 또한 pH 9, 질소와 인의 농도 10 mM, ${Mg/PO_4}^{3-}$, ${NH_4}^+$의 비율 2의 조건에서 해수염을 사용하여 실험한 결과 질소의 제거율은 90 %, 인의 제거율은 70 %로 나타났다. 상대적으로 인의 제거율이 높은 이유는 해수를 사용한 경우 질소와 인의 몰 농도의 차이에서 비롯되었으며, 해수염을 사용한 경우 해수에 포함된 칼슘이 인과 반응하여 수산화인회석으로 침전 제거되었다고 할 수 있다. 수중의 질소와 인을 제거를 위하여 해수와 해수염을 사용한 결과 높은 제거율을 나타내었다.

인산염 농도와 폐수조건 변화에 따른 입상 전로슬래그의 양이온 용출 특성과 인산염 제거의 관계에 관한 연구 (Relation between Leaching Characteristics of the positive Ions and Phosphate Removal by granular Converter Slag for the different Conditions and Concentrations of Phosphate)

  • 이인구;이상호
    • 한국산학기술학회논문지
    • /
    • 제8권2호
    • /
    • pp.372-379
    • /
    • 2007
  • 전로슬래그는 폐수 중에 함유된 인산염을 고형물 형태로 제거하는데 유용하게 사용될 수 있다 본 연구는 전로슬래그를 이용하는데 있어서 폐수의 초기 조건에 따라 전로슬래그로 인한 폐수의 pH, 알칼리도 그리고 양이온 용출변화에 따른 인산염 제거 등에 관하여 연구하였다. 실험대상 폐수의 pH를 0.5 단위로 7.0부터 8.5까지 다른 초기조건에서 폐수의 pH는 10시간 내에 급격하게 pH 11이상까지 상승하였다. 알칼리도는 pH보다는 급격하게 상승하지는 않았지만 반응시간 10 시간이 경과한 후 꾸준하게 상승하였다. 인산염 제거는 pH상승, 알칼리도 상승과 함께 반응시간 10시간까지 급격하게 제거되다가 서서히 제거되는 양상을 보였다. 반응시간 27시간 경과 후 그리고 36 시간 경과 후 전로슬래그에 함유된 마그네슘 이온 용출 농도를 측정한 결과 2.0 mg/L과 4.3 mg/L 수준까지 지속적으로 용출 되었다. 본 실험 결과 전로슬래그에 함유된 마그네슘이 용출되었기 때문에 물속에 암모니아가 존재한다면 인산염과 함께 스트루바이트 형태의 결정체로 인이 제거될 수 있음을 확인하였다.

  • PDF

굴 패각의 전처리 조건에 따른 인산염 제거효율에 관한 연구 (A Study on Phosphate Removal Efficiency by Pre-Treatment Conditioning of Oyster Shells)

  • 우희은;김경민;이인철;김경회
    • 해양환경안전학회지
    • /
    • 제24권2호
    • /
    • pp.196-202
    • /
    • 2018
  • 굴 패각과 같은 반응성 재료는 사용 목적에 적합한 전처리 조건을 선택할 필요가 있다. 본 연구에서는 인 농도 제어를 목적으로 효율적인 굴 패각 사용을 위한 전처리 조건을 제안하는데 목적을 둔다. 굴 패각의 전처리(소성 온도, 소성 시간, 입자 크기)에 따른 인산염 제거 효율을 조사하였다. 또한 XAFS 분석 및 등온 흡착 실험을 통해 굴 패각의 인산염 제거특성에 대해 조사하였다. 실험 결과 소성 온도는 $600^{\circ}C$, 소성 시간은 6 h, 입자 크기는 0.355~0.075 mm에서 우수한 제거 효율을 확인하였다. 등온 흡착 실험 결과 Langmuir 모델이 굴 패각의 흡착에 적합한 것으로 나타났다. XAFS 분석 결과 $600^{\circ}C$에서 소성시킨 굴 패각에는 인산칼슘이 생성된 것이 확인되었다. 즉 굴 패각의 칼슘 이온 용출에 의한 인산칼슘 형성이 인산염의 농도 감소에 기여하고 있음을 확인하였다.

PHMG-Phosphate의 직업적 유해성평가를 통한 노출기준 제안 연구 (Recommendation of Occupational Exposure Limit through occupational hazard assessment of PHMG-Phosphate)

  • 이혜림;변상훈;이권섭
    • 한국산업보건학회지
    • /
    • 제29권1호
    • /
    • pp.13-20
    • /
    • 2019
  • Objective: This study was performed to propose a domestic occupational exposure limit(OEL) following a health hazard assessment, calculation of a non-carcinogenicity reference concentration worker($RfC_{worker}$) value, and examination of international agencies' exposure limits. It also recommends legal management within the Occupational Safety and Health Act for PHMG-Phosphate(CAS No. 89697-78-9), It is a humidifier disinfectant that generated many lung injuries. Methods: We have investigated the recommendation or guidelines of foreign OEL for PHMG-Phosphate and the actual state of legal management in Korea. To examine the procedures and methods for recommendation OEL. Toxicological hazard and health hazard classifications were examined and a non-carcinogenicity $RfC_{worker}$ value was calculated for PHMG-Phosphate. An OEL and the necessity of legal management were recommended as well. Results and Conclusions: The OEL for PHMG-Phosphate is recommended to be $0.01mg/m^3$. The recommended OEL is close to 10 times the RfCworker value of $0.000833mg/m^3$ calculated from the chemical dose-response hazard assessment, which is a 2017 study. The CMIT/MIT(3:1) mixture, which was a social issue as a humidifier disinfectant substance, was also exposed to the same ratio in March 2018, establish the OEL. It is recommended to establish OEL for PHMG-Phosphate to prevent worker health hazards and for chemical safety management.

Mineral composition and phosphorus digestibility in feed phosphates fed to pigs and poultry

  • Su A, Lee;Diego A., Lopez;Hans H., Stein
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.167-174
    • /
    • 2023
  • Phosphorus (P) is a macro mineral needed for bone mineralization and cell membrane structure and P is also involved in several fundamental pathways of metabolism in the body. Because of the low concentration and digestibility of P in plant ingredients that are the main components of diets for poultry and pigs, feed phosphates are usually included in diets in addition to the P contributed by plant ingredients. The most widely used feed phosphates in poultry and swine diets are dicalcium phosphate (DCP) and monocalcium phosphate (MCP), but tricalcium phosphate (TCP), monosodium phosphate (MSP), and magnesium phosphate (MgP) may be used as well. Because feed phosphates are mostly produced from rock phosphate, feed phosphates have impurities that contain minerals other than P. Concentrations of P in feed phosphates range from 14.8% (MgP) to 25.7% (MSP). The standardized total tract digestibility (STTD) of P in pigs ranges from 71% (TCP) to 95% (MSP). The STTD of Ca and the standardized ileal digestibility (SID) of P and Ca in feed phosphates fed to pigs and poultry have been determined only in a few experiments. Available data indicate that the STTD of Ca and SID of P in MCP are greater than in DCP in both poultry and pigs, but the SID of Ca is similar between DCP and MCP fed to broilers. Information on mineral concentrations and digestibility values in feed phosphates is needed in diet formulation for pigs and poultry, but if diets are formulated to contain equal concentrations of digestible P and Ca, it is unlikely that animal performance will be impacted by the source of feed phosphates used in the diet.

염산용액(鹽酸溶液)에서 Tri-Butyl Phosphate(TBP)에 의한 주석(朱錫)(IV)의 용매추출(溶媒抽出) (Solvent Extraction of Sn(IV) from Hydrochloric Acid Solution by Tri-Butyl Phosphate(TBP))

  • 서재성;안재우;이만승
    • 자원리싸이클링
    • /
    • 제19권3호
    • /
    • pp.45-51
    • /
    • 2010
  • 염산용액으로부터 TBP(Tri-butyl Phosphate)를 사용하여 주석(IV)의 추출에 대한 기초연구를 실시하였다. 수용액상에서 염산과 염소이온($Cl^-$) 농도, 주석 농도 및 추출제 농도 등과 같은 실험인자들이 주석의 추출에 미치는 영향을 조사하였다. 염산과 염소이온 농도가 증가할수록 주석의 추출율이 증가하였고, 7.0M의 염산농도에서 10% TBP에 의해 주석이 98%이상 추출되었다. McCabe-thiele 도표 분석을 통해 주석의 연속 추출에 필요한 이론적인 최적 추출단수를 구하였다. 한편 탈거액으로 NaOH 용액이 효과적이었고, 2.0M NaOH 에서 99.3%이상의 높은 탈거율을 나타냈다.

미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산 (Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell)

  • 이유진;오유관;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).

Phosphate Associated Cadmium Immobilization Mechanism Depending on the Original Concentration of Cd in Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.429-433
    • /
    • 2016
  • Adsorption and precipitation of cadmium (Cd) could be dependent on rate of P addition and Cd level in soil. Therefore, the objective of this study was to examine how addition rate of P affect mechanisms of Cd immobilization such as adsorption and precipitation in different levels of Cd in soil. Arable soils were spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of 10, 100, and $1,000mg\;Cd\;kg^{-1}$. Monopotassium phosphate ($KH_2PO_4$, MPP) was selected as phosphate material and mixed with the pretreated arable soil at the rates of 0, 800, 1,600 and $3,200mg\;P\;kg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 8 weeks in dark condition. Soil pH decreased with increasing MPP addition rate in all levels of Cd but negative charge of soil increased, thereby reducing 1 M $NH_4OAc$ extractable Cd. Soil solutions were undersaturated with respect to $CdCO_3$ and $Cd_3(PO_4)_2$ with all P addition rate in soil with low Cd level (${\leq}100mg\;Cd\;kg^{-1}$) but supersaturated in soil with high Cd level ($1,000mg\;Cd\;kg^{-1}$). From the above results, Cd solubility was controlled by precipitation of Cd minerals such as $CdCO_3$ and $Cd_3(PO_4)_2$ in soil with high Cd level but by Cd adsorption induced by increase in negative charge of soil with low level of Cd.

Inhibitory Effect of Chitosan and Phosphate Cross-linked Chitosan against Cucumber Mosaic Virus and Pepper Mild Mottle Virus

  • Gangireddygari, Venkata Subba Reddy;Chung, Bong Nam;Cho, In-Sook;Yoon, Ju-Yeon
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.632-640
    • /
    • 2021
  • Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.

Influence of 10-Methacryloyloxydecyl Dihydrogen Phosphate on Cellular Senescence in Osteoblast-Like Cells

  • Ju Yeon Ban;Sang-Im Lee
    • 치위생과학회지
    • /
    • 제23권4호
    • /
    • pp.264-270
    • /
    • 2023
  • Background: Resin-based dental materials release residual monomers or other substances from incomplete polymerization into the oral cavity, thereby causing adverse biological effects on oral tissue. 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP), an acidic monomer containing dihydrogen phosphate and methacrylate groups, is the most commonly used component of resin-based dental materials, such as restorative composite resins, dentin adhesives, and resin cements. Although previous studies have reported the cytotoxicity and biocompatibility in various cultured cells, the effects of resin monomers on cellular aging have not been reported to date. Therefore, this study aimed to investigate the effects of the resin monomer 10-MDP on cellular senescence and inflamm-aging in vitro. Methods: After stimulation with 10-MDP, MC3T3-E1 osteoblast-like cells were examined for cell viability by WST-8 assay and reactive oxygen species (ROS) production by flow cytometry. The protein and mRNA levels of molecular markers of aging were determined by western blotting and RT-PCR analysis, respectively. Results: Treatment with 0.05 to 1 mM 10-MDP for 24 hours reduced the survival of MC3T3-E1 cells in a concentration-dependent manner. The intracellular ROS levels in the 10-MDP-treated experimental group were significantly higher than those in the control group. 10-MDP at a concentration of 0.1 mM increased p53, p16, and p21 protein levels. Additionally, an aging pattern was observed with blue staining due to intracellular senescence-associated beta-galactosidase activity. Treatment with 10-MDP increased the levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8, however their expression was decreased by mitogen-activated-protein-kinase (MAPK) inhibitors. Conclusion: Taken together, these results suggest that the exposure of osteoblast-like cells to the dental resin monomer 10-MDP, increases the level of cellular senescence and the inflammatory response is mediated by the MAPK pathway.