• Title/Summary/Keyword: Phenylpropanoid pathway

Search Result 40, Processing Time 0.024 seconds

Phenylalanine Ammonia-Lyase Gene (NtPAL4) Induced by Abiotic Stresses in Tobacco (Nicotiana tabacum)

  • Han, Woong;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.535-540
    • /
    • 2010
  • Phenylalanine ammonia-lyase (PAL), a key enzyme of the phenylpropanoid biosynthesis pathway, is activated by a number of developmental and environmental cues. The coding region of the NtPAL4 gene was 2,154 bp in length, and its deduced protein was composed of 717 amino acids. Sequence analysis of NtPAL4 cDNA from tobacco (Nicotiana tabacum L.) revealed high structural similarity to PAL genes of other plant species. The NtPAL4 gene exists as a single copy in the tobacco plant, and its transcripts were strongly expressed in flowers and leaves. NtPAL4 expression was significantly induced in response to NaCl, mannitol, and cold treatments, but it was not induced by abscisic acid (ABA). NtPAL4 expression decreased gradually after treatment with ABA and $H_2O_2$; however, NtPAL4 transcripts accumulated after treatment with methyl viologen (MV). Our results suggest that the NtPAL4 gene may function in response to abiotic stresses.

A comparison of individual and combined $_L$-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens

  • Way, Heather M.;Birch, Robert G.;Manners, John M.
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.301-308
    • /
    • 2011
  • This study tested the relative and combined efficacy of ShPx2 and ShPAL transgenes by comparing Nicotiana tabacum hybrids with enhanced levels of $_L$-phenylalanine ammonia lyase (PAL) activity and cationic peroxidase (Prx) activity with transgenic parental lines that overexpress either transgene. The PAL/Prx hybrids expressed both transgenes driven by the 35S CaMV promoter, and leaf PAL and Prx enzyme activities were similar to those of the relevant transgenic parent and seven- to tenfold higher than nontransgenic controls. Lignin levels in the PAL/Prx hybrids were higher than the PAL parent and nontransgenic controls, but not significantly higher than the Prx parent. All transgenic plants showed increased resistance to the necrotrophs Phytophthora parasitica pv. nicotianae and Cercospora nicotianae compared to nontransgenic controls, with a preponderance of smaller lesion categories produced in Prx-expressing lines. However, the PAL/Prx hybrids showed no significant increase in resistance to either pathogen relative to the Prx parental line. These data indicate that, in tobacco, the PAL and Prx transgenes do not act additively in disease resistance. Stacking with Prx did not prevent a visible growth inhibition from PAL overexpression. Practical use of ShPAL will likely require more sophisticated developmental control, and we conclude that ShPx2 is a preferred candidate for development as a resistance transgene.

Overcoming Encouragement of Dragon Fruit Plant (Hylocereus undatus) against Stem Brown Spot Disease Caused by Neoscytalidium dimidiatum Using Bacillus subtilis Combined with Sodium Bicarbonate

  • Ratanaprom, Sanan;Nakkanong, Korakot;Nualsri, Charassri;Jiwanit, Palakrit;Rongsawat, Thanyakorn;Woraathakorn, Natthakorn
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.205-214
    • /
    • 2021
  • The use of the supernatant from a Bacillus subtilis culture mixed with sodium bicarbonate was explored as a means of controlling stem brown spot disease in dragon fruit plants. In in vitro experiments, the B. subtilis supernatant used with sodium bicarbonate showed a strong inhibition effect on the growth of the fungus, Neoscytalidium dimidiatum, the agent causing stem brown spot disease and was notably effective in preventing fungal invasion of dragon fruit plant. This combination not only directly suppressed the growth of N. dimidiatum, but also indirectly affected the development of the disease by eliciting the dragon-fruit plant's defense response. Substantial levels of the pathogenesis-related proteins, chitinase and glucanase, and the phenylpropanoid biosynthetic pathway enzymes, peroxidase and phenyl alanine ammonia-lyase, were triggered. Significant lignin deposition was also detected in treated cladodes of injured dragon fruit plants in in vivo experiments. In summary, B. subtilis supernatant combined with sodium bicarbonate protected dragon fruit plant loss through stem brown spot disease during plant development in the field through pathogenic fungal inhibition and the induction of defense response mechanisms.

Micro-screening Method for the Anticomplement Substances from Natural Resources (천연유래의 항보체 활성물질 선발을 위한 미량탐색법)

  • Oh, Sei-Ryang;Jung, Keun-Young;Lee, Hyeong-Kyu
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.147-152
    • /
    • 1996
  • To screen inhibitors on complement system from natural resources, micro-screening method was established by using hemolytic complement assay. Complement fixation reaction was carried out in the microplate system. For standard hemolysis (50% hemolysis) of the classical pathway (CP), hemolysin and complement serum were diluted to $1/75{\sim}1/100\;and\;1/80{\sim}1/120$, respectively, when sheep erythrocytes were $5.0{\times}10^8\;cells/ml$. In case of the alternative pathway (AP), complement serum was diluted to 1/5 and EGTA and $Mg^{2+}$ were added 4 mM, $4{\sim}8\;mM$, respectively, when rabbit erythrocytes were $4.0{\times}10^8\;cells/ml$. Dimethyl sulfoxide was used for the assay of non-aquous soluble compounds or extracts and its final concentration was not more than 1%. Three phenylpropanoids showed anticomplementary activities in proportion to the concentration for both pathways and rosmarinic acid exihibited the highest inhibitory activities: $5.4{\pm}3.6%(0.063\;mM){\sim}95.8{\pm}0.2%(0.5\;mM)\;and\;35.1{\pm}0.9%(0.063\;mM){\sim}95.6{\pm}1.1%(1\;mM)$ on the CP and the AP, respectively.

  • PDF

Regulation of Cinnamyl Alcohol Dehydrogenase (CAD) Gene Family in Lignin Biosynthesis (리그닌 생합성에서 cinnamyl alcohol dehydrogenase (CAD) 유전자 family의 조절)

  • Kim, Young-Hwa;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.944-953
    • /
    • 2021
  • Lignin is a complex phenylpropanoid polymer abundant in the cell walls of vascular plants. It is mainly presented in conducting and supporting tissues, assisting in water transport and mechanical strength. Lignification is also utilized as a defense mechanism against pathogen infection or wounding to protect plant tissues. The monolignol precursors of lignin are synthesized by cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes cinnamaldehydes to cinnamyl alcohols, such as p-coumaryl, coniferyl, and sinapyl alcohols. CAD exists as a multigenic family in angiosperms, and CAD isoforms with different functions have been identified in different plant species. Multiple isoforms of CAD genes are differentially expressed during development and upon environmental cues. CAD enzymes having different functions have been found so far, showing that one of its isoforms may be involved in developmental lignification, whereas others may affect the composition of defensive lignins and other wall-bound phenolics. Substrate specificity appears differently depending on the CAD isoform, which contributes to revealing the biochemical properties of CAD proteins that regulate lignin synthesis. In this review, details regarding the expression and regulation of the CAD family in lignin biosynthesis are discussed. The isoforms of the CAD multigenic family have complex genetic regulation, and the signaling pathway and stress responses of plant development are closely linked. The synthesis of monolignol by CAD genes is likely to be regulated by development and environmental cues as well.

High Yield Bacterial Expression and Purification of Active Cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis Membrane Protein (대장균 시스템을 이용한 Arabidopsis 막 단백질 cytochrome P450 p-coumarate-3hydroxylase (C3H) 활성형의 과발현 및 분리정제)

  • Yang, Hee-Jung;Kim, Wan-Yeon;Yun, Young-Ju;Yoon, Ji-Won;Kwon, Tae-Woo;Youn, Hye-Sook;Youn, Bu-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1039-1046
    • /
    • 2009
  • The cytochrome P450s (P450s) metabolizing natural products are among the most versatile biological catalysts known in plants, but knowledge of the structural basis for their broad substrate specificity has been limited. The activity of p-coumarate 3-hydroxylase (C3H) is thought to be essential for the biosynthesis of lignin and many other phenylpropanoid pathway products in plants however, all attempts to express and purify the protein corresponding C3H gene have failed. As a result, no conditions suitable for the unambiguous assay of the enzyme are known. The detailed understanding of the mechanism and substrate-specificity of C3Hdemands a method for the production of active protein on the milligram scale. We have developed a bacterial expression and purification system for the plant C3H, which allows for the quick expression and purification of active wild-type C3H via introduction of combinational mutagenesis. The modified cytochrome P450 C3H ($C3H_{mod}$) could be purified in the absence of detergent using immobilized metal affinity chromatography and size exclusion chromatography following extraction from isolated membranes in a high salt buffer and catalytically activated. This method makes the use of isotopic labeling of C3H for NMRstudies and X-ray crystallography practical, and is also applicable to other plant cytochrome P450 proteins.

Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana

  • Song Ju-Yeun;Kim Tae-Yun;Hong Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1093-1102
    • /
    • 2005
  • Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia Iyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA $(50-1000\;{\mu}M)$ led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day, This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures ($10^{\circ}C,\;17^{\circ}C,\;25^{\circ}C$and $30^{\circ}C$) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures ($17^{\circ}C$) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures ($30^{\circ}C$) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures Induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in .A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.

Differential Expression of C4H and F5H Genes in Rice (Oryza sativa L.) after Gamma-irradiation

  • Park, Young-Mi;Chae, Hyo-Seok;Chung, Byung-Yeoup;Kim, Jae-Sung;Kim, Jin-Hong;Wi, Seung-Gon;An, Byung-Chull;Cho, Jae-Young
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.155-159
    • /
    • 2006
  • To reveal effects of gamma-irradiation with various doses on the expressions of C4H and F5H genes, the transcription levels of OsC4HL and OsF5HL were investigated in leaves and stems of two rice cultivars, Ilpoombyeo and IR-29, after the irradiation with 5, 10, 50, or 100 Gy for 4 h. In overall pattern of 24 h after the irradiation, the transcription levels of the two genes increased with the increasing doses of radiation in the leaves of both cultivars, except that of OsC4HL in IR-29. However, in the stems, the transcription level of OsF5HL increased in Ilpoombyeo and decreased in IR-29 dose-dependently, while that of OsC4HL decreased in Ilpoombyeo with the increasing doses of radiation and remained constant in IR-29. When the expressions of OsC4HL and OsF5HL were investigated in a time-course after the irradiation with 100 Gy, they reached their highest levels in the leaves of both cultivars 5 hand 72 h after the irradiation, respectively. Therefore, we suggest that the expressions of OsC4HL and OsF5HL, which involved in the same phenylpropanoid pathway, are differentially regulated during the post-irradiation period, showing different cultivar and tissue specificity. Furthermore, the dose dependency of the gene expressions is also discussed immediately after the irradiation.

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun;Cho, Min-Ji;Yun, Hye-Jin;Ha, Sang-Keun;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.168-180
    • /
    • 2016
  • Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.