• 제목/요약/키워드: Phenyllactic acid

검색결과 8건 처리시간 0.022초

한국토종닭 소장에서 분리한 Lactobacillus pentosus K34가 생산하는 항균성 유기산의 특성 (Characteristics of Antimicrobial Organic Acids Produced by lactobacillus pentosus K34 isolated from Small Intestines of Korean Native Chickens)

  • 이재연;황교열;김근;성수일;박영식;백만정;김경례
    • 한국미생물·생명공학회지
    • /
    • 제30권3호
    • /
    • pp.241-246
    • /
    • 2002
  • 한국 토종닭의 작은창자로부터 살모넬라와 포도상구균치 성장 저해력이 우수한 7주의 유산균을 분리하였다. 분리된 7주의 배양액을 단백질 분해효소로 처리한 결과 저해활성의 변화가 없었다. Lactic acid 1.8 %에 의하여서는 Salmonella gallinarum의 성장저해환이 9 mm 나타났는데 , 대부분의 분리 유산균 배양액은 산도가 1.08∼l.8 %인데도 불구하고 성장 저해환이 10∼ll mm로 나타난 것으로 보아 유산균 배양액내에는 lactic acid이외의 다른 물질이 있는 것으로 사료된다. GC-MSD를 이용하여 항균성이 우수한 L. pentosus K34 배양 액내의 생성된 유기산 metabolic profile을 조사한 결과 28종의 유기산이 검출되었으며, 그 중 천연항균물질인 phenyllactic acid가 lactic acid, acetic acid와 더불어 높은 농도로. 생산되었다. Phenyllactic acid는 acetic acid, formic acid, lactic acid와 저해활성을 비교하였을 때 우수한 항균활성을 보였으며 acetic acid, formic acid, lactic acid가 pH 5.0에서는 저해활성이 크게 감소함에 비하여 phenyllactic acid는 pH 5.0에서도 저해활성이 그대로 유지되었다. Phenyllactic acid는 살모넬라, 포도상 구균에 대한 항균능력이 특이적으로 강력하게 나타났으며 효모, 곰팡이에 대한 항균활성은 매우 낮았다.

Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria

  • Yoo, Jeoung Ah;Lim, Young Muk;Yoon, Min Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제59권3호
    • /
    • pp.173-178
    • /
    • 2016
  • Phenyllactic acid (PLA), which is a known antimicrobial compound, can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase of lactic acid bacteria (LAB). PLA-producing LAB was isolated from coffee beans, and the isolated LAB was identified as Lactobacillus zeae Y44 by 16S rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. zeae Y44 was assessed for both its capability to produce the antimicrobial compound PLA and its antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Colletotrichum aculatum). PLA concentration was found to be 4.21 mM in CFS when L. zeae Y44 was grown in MRS broth containing 5 mM PPA for 12 h. PLA production could be promoted by the supplementation with PPA and phenylalanine (Phe) in the MRS broth, but not affected by 4-hydroxy-phenylpyruvic acid, and inhibited by tyrosine as precursors. Antifungal activity assessment demonstrated that all fungal pathogens were sensitive to 5 % CFS (v/v) of L. zeae Y44 with average growth inhibitions ranging from 27.8 to 50.0 % (p<0.005), in which R. solani was the most sensitive with an inhibition of 50.0 %, followed by B. cinerea and C. aculatum. However, pH modification of CFS to pH 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that the antifungal activity of CFS was caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

Antifungal Effect of Phenyllactic Acid Produced by Lactobacillus casei Isolated from Button Mushroom

  • Yoo, Jeoung Ah;Lee, Chan-Jung;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제14권4호
    • /
    • pp.162-167
    • /
    • 2016
  • Lactic acid bacteria (LAB) producing phenyllactic acid (PLA), which is known as antimicrobial compound, was isolated from button mushroom bed and the isolated LAB was identified to Lactobacillus casei by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. casei was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23 mM in CFS when L. casei was grown in MRS broth containing 5 mM phenylpyruvic acid as precursor for 16 h. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. casei with average growth inhibitions ranging from 34.58% to 65.15% (p < 0.005), in which R. solani was the most sensitive to 65.15% and followed by C. aculatum, and B. cinerea. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range of 0.35 mg mL-1 (2.11 mM) to 0.7 mg mL-1 (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens were not affected by the heating or protease treatment. However, pH modification in CFS to 6.5 resulted in an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS was caused by acidic compounds like PLA or organic acids rather than protein or peptide molecules.

Selective Cytotoxicity of Novel Platinum(II) Complexes on Gastric Cancer Cell-Lines and Normal Kidney Cells

  • Kim, Jung-Tae;Hong, Eon-Pyo;Rho, Young-Soo;Jung, Jee-Chang
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.358.3-358.3
    • /
    • 2002
  • We recently synthesized new platinum(II) complex analogs containing trans-1 and cis-l.2-diaminocyclohexane (DACH) as carrier ligands and L -3-phenyllactic acid(PLA) as a leaving group. Our platinum-based drug discovery program has been aimed at developing drugs capable of diminishing toxicity and improving selective cytotoxicity. (omitted)

  • PDF

Production of Phenyl Lactic Acid (PLA) by Lactic Acid Bacteria and its Antifungal Effect

  • Song, June-Seob;Jang, Joo-Yeon;Han, Chang-Hoon;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.125-131
    • /
    • 2015
  • Phenyllactic acid (PLA) which is known as antimicrobial compound can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase (LDH) of lactic acid bacteria (LAB). LAB producing PLA was isolated from Korea Kimchi and identified to Lactobacillus plantarum SJ21 by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. plantarum SJ21 was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against four fungal pathogens (Rhizoctonia solani, Aspergillus oryzae, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23mM in CFS when L. plantarum SJ21 was grown in MRS broth containing 5mM PPA for 16 h. PLA production also could be promoted by the supplement of PPA and phenylalanine in MRS broth, but inhibited by the supplement of 4-hydroxyphenylpyruvic acid and tyrosine as precursors. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. plantarum SJ21 with average growth inhibitions ranging from 27.32% to 69.05% (p<0.005), in which R. solani was the most sensitive to 69.05% and followed by B. cinerea, C. aculatum, and A. oryzae. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range from $0.35mg\;mL^{-1}$ (2.11 mM) to $0.7mg\;mL^{-1}$ (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens was not affected by heating or protease treatment. However, pH modification in CFS to 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS were caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

In silico Analysis of Natural Compounds as Modulators of Type I Collagen

  • Narayanaswamy, Radhakrishnan;Wai, Lam Kok;Esa, Norhaizan Mohd;Ismail, Intan Safinar
    • 통합자연과학논문집
    • /
    • 제9권3호
    • /
    • pp.166-170
    • /
    • 2016
  • Collagen plays a vital role in the maintenance of structure and function of a human body. It has been widely applied in various fields including biomedical, cosmeceutical, food, pharmaceutical and tissue engineering. In the present study, the docking behaviour of type I collagen with 15 different ligands namely hydroxymethylfurfural, methylglyoxal, methylsyringate, O-methoxyacetophenone, 3-phenyllactic acid, 4-hydroxybenzoic acid, kojic acid, lumichrome, galangin, artoindonesianin F, caffeic acid, 4-coumaric acid, origanol A, thymoquinone and quercetin was evaluated along with their putative binding sites using Discovery Studio Version 3.1. Docking studies and binding free energy calculations revealed that origanol A has maximum interaction energy (-40.48 kcal/mol) and quercetin with the least interaction energy (-15.44 kcal/mol) as compared to the other investigated ligands. Three ligands which are galangin, methylsyringate and origanol A were shown to interact with Asp21 amino acid residue of chain B (type I collagen). Therefore, it is strongly suggested that the outcomes from the present study might provide new insight in understanding these 15 ligands as potential type I collagen modulators for the prevention of collagen associate disorders.

Selective Cytotoxicity of Novel Platinum(II) Coordination Complexes on Human Bladder Cancer Cell-Lines and Normal Kidney Cells

  • Kim, Jung-Tae;Rho, Young-Soo;Jung, Jee-Chang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.111-117
    • /
    • 2003
  • Cisplatin is often effective in cancer treatment, but its clinical use is limited because of its nephrotoxicity. We have synthesized new platinum(II) coordination complexes (PC-1 & PC-2) containing trans-${\iota}$ and cis-1,2-diaminocyclohexane (DACH) as carrier ligands and L-3 -phenyllactic acid (PLA) as a leaving group with the aim of reducing nephrotoxicity but maintaining its anticancer activity. In this study, new platinum(II) complex compounds were evaluated for selective cytotoxicity on cancer cell-lines and normal kidney cells. The new platinum complexes have demonstrated high efficacy in the cytotoxicity against human bladder carcinoma cell-lines (T-24/HT-1376). The cytotoxicity of these compounds against rabbit proximal renal tubular cells and human renal cortical tissues, was determined by MTT assay, the [3H]-thymidine uptake and glucose consumption test, and found to be quite less than those of cisplatin. Based on our results, these novel platinum compounds appear to be valuable lead compounds with high efficacy and low nephrotoxicity.