• Title/Summary/Keyword: Phenyl modification

Search Result 33, Processing Time 0.024 seconds

Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress

  • Oh, Min Chang;Piao, Mei Jing;Jayatissa Fernando, Pattage Madushan Dilhara;Han, Xia;Madduma Hewage, Susara Ruwan Kumara;Park, Jeong Eon;Ko, Mi Sung;Jung, Uhee;Kim, In Gyu;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.616-622
    • /
    • 2016
  • Baicalein (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis. This study evaluated the protective effects of baicalein against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) radiation in a human keratinocyte cell line (HaCaT). Baicalein absorbed light within the wavelength range of UVB. In addition, baicalein decreased the level of intracellular reactive oxygen species (ROS) in response to UVB radiation. Baicalein protected cells against UVB radiation-induced DNA breaks, 8-isoprostane generation and protein modification in HaCaT cells. Furthermore, baicalein suppressed the apoptotic cell death by UVB radiation. These findings suggest that baicalein protected HaCaT cells against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging ROS.

Studies on the Primary Structure of the Alkaline Protease in Neungee [Sarcodon aspratus (Berk.) S. Ito] I. Amino Acid Composition, Chemical Modification and Sequence of the N-terminal Amino Acid (능이[Sarcodon aspratus(Berk.) S. Ito]중 알카리성 단백질가수분해효소의 1차구조에 관한 연구 I. 아미노산 조성, 활성부위 아미노산 및 N-말단 부위의 아미노산 배열)

  • 이태규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.811-814
    • /
    • 1993
  • Properties of a protease purified from Sarcodon asparatus(Berk.) S. Ito have been investigated. The enzyme displays as a glycosylated serine protease. The sequence for the 21 amino acids of the N-terminal side in the enzyme was determined by automated sequence analysis. The sequence was V-T-T-K-Q-T-N-A-P-W-G-L-G-N-I-S-T-T-N-K-L-.

  • PDF

Bulk Heterojunction Solar Cell using Ru Dye Attached PCBM

  • Il-Su Park;Jae-Keun Hwang;Yongseok Jun;Donghwan Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2024
  • Ru dye (Z-907) is a crucial photosensitizing material in dye-sensitized solar cells (DSSCs). To enhance the utilization of Ru dye's photosensitizing properties in bulk heterojunction solar cells, a method was developed to synthesize phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles that are chemically linked to Ru dye. PCBM contains a methoxy (-OCH3) group, whereas Ru dye incorporates a carboxyl group (-COOH) within its molecular structure. By exploiting these complementary functional groups, a successful bond between Ru dye and PCBM was established through an anhydride functional group. The coupling of PCBM with Ru dye results in a modification of the energy levels, yielding lower LUMO (3.8 eV) and HOMO (6.1 eV) levels, compared with the LUMO (3.0 eV) and HOMO (5.2 eV) levels of Ru dye alone. This configuration potentially facilitates efficient electron transfer from Ru dye to PCBM, alongside promoting hole transfer from Ru dye to the conducting polymer. Consequently, the bulk heterojunction solar cells incorporating this Ru dye-PCBM configuration demonstrate superior performance, with an open circuit voltage (Voc) of 0.62 V, short circuit current (Jsc) of 0.63 mA cm-2, fill factor (FF) of 65.6%, and a photovoltaic conversion efficiency (η) of 0.25%.

Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent (비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성)

  • Na, Ho Seong;Park, Min-Gyeong;Lim, Hyung Mi;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

Comparative Molecular Field Analyses on the Fungicidal Activities of N-phenylthionocarbamate Derivatives based on Different Alignment Approaches (상이한 정렬에 따른 N-phenylthionocarbamate 유도체들의 살균활성에 관한 비교 분자장 분석)

  • Sung, Nack-Do;Soung, Min-Gyu;You, Jae-Won;Jang, Seok-Chan
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.157-164
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) for the fungicidal activities against Rhizoctonia solani (RS) and Phytophthora capsici (PC) by N-phenyl substituents(X) of N-phenylthionocarbamate derivatives were studied quantitatively using comparative molecular field analysis (CoMFA) methodology based on different alignment approaches. Statistical quality of CoMFA models with field fit alignment were slightly higher than that of atom based fit alignment. The optimized CoMFA models (RS: RF2 & PC: PF2) were derived from field fit alignment and combination of CoMFA fields. And the statistical results of the two models showed the best predictability of the fungicidal activities based on the cross-validated value $q^2$ ($r^2_{cv.}$ =RS: 0.557 & PC: 0.676) and non-cross-validated value ($r^2_{ncv.}$ =RS: 0.954 & PC: 0.968), respectively. The selective fungicidal activities between two fungi were dependence upon the electrostatic field of substrate molecule. Therefore, the fungicidal activities from CoMFA contour maps showed that the fungicidal activity will be able to increased according to the modification of X-substituents on the substrate molecules.

Mechanisms of tert-Buthyl Hydroperoxide-induced Membrane Depolarization in Rat Spinal Substantia Gelatinosa Neurons

  • Lim, Seong-Jun;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2008
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate ($IP_3$) receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular $Ca^{2+}$ store mainly via $PLC-IP_3$ pathway.

Novel Purification and Characterization of Glucose oxidase from Aspergillus niger (Aspergillus niger Glucose oxidase의 새로운 정제 방법 및 특성)

  • 한상배;김광진
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 1994
  • Glucose oxidase(EC 1.1.3.4) was purified to electrophoretic homogeneity from Aspergillus niger by a combination of ammonium sulfate fractionation, ion exchange chromatography, and ultrafiltration. Two active fractions A and B, of glucose oxidase were obtained from the hydrophobic chromatography on phenyl sepharose CL-4B. The enzyme A and B were glycoproteins with the same denatured molecular weight of 78, 000 and had specific activities of 2, 191 and 1, 273-units/mg proteins, respectively. But the two enzymes showed differences in native molecular weight that was measured by HPLC gel filteration, maximum absorbtion wavelength and isoelectric point. The enzyme A oxidized $\beta$-D-glucose only and was resistant to sodium dodecyl sulfate. Activity optimum was found at $30^{\circ}C$ and pH 3.5. Also the enzyme A was inhibited greatly by $Hg^{2+}$(10mM). The results of chemical modification experiments suggested that cysteine and cystine residues might be involved in the active site of the enzyme A.

  • PDF

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

Trend on Development and Application of High Performance Surfactants for Detergents (세제용 고기능성 계면활성제의 개발 및 응용 동향)

  • Rang, Moon-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • The surfactants applied in household detergents and industrial cleansers should satisfy the requirement of not just the basic function such as emulsification, solubilisation, dispersion, detergency, wetting and foaming, but also the economical efficiency and the safety to human and environment. In the viewpoint of the sustainable development, the surfactants, moreover, have to reduce raw materials and energy consumption and waste disposal when they are being manufactured and also consumed for their purposes. New high-performance surfactants have been extensively studied and developed in order to respond the change in social and economical environment. Noticeable progresses have been achieved so far, which are the significant increase in solubility and surface activity through the minor modification of existing surfactant molecular structure and the synergistic increase in a surface activity shown in the mixed surfactant system of anionic and cationic surfactants. In this review, the important and meaningful progresses achieved recently in technological advance and practical application will be summarized and discussed.

Synthesis of New 2,4-Diimino-1,3-thiazoles and the Structure Determination (새로운 2,4-Diimino-1,3-thiazoles 유도체의 합성과 구조 결정)

  • Hoh-Gyu Hahn;Chul-soo Lim;Heduck Mah
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.38-42
    • /
    • 2003
  • For the purpose of developing new agrochemical fungicides, compound 2 possessing 1,3-thiazole scaffold as well as urea moiety in the structure was designed through molecular modification of lead compound, 2-imino-1,3-thiazoline based on isosterism. The reaction of N-methylthiouea 5 and bromoacetonitrile in ethanol gave 2,4-diimino-1,3-thiazole 4 regioselectively, which was treated with phenyl isocyanates to give the corresponding 7 which is tautomer of 2. The structural assignment of 7 was confirmed by various spectra($^1H$ NMR, $^{13}C$ NMR, FT-IR, HRMS), and X-ray crystallographic data. Compound 8 which is a structural isomer of 7 was formed through thermodynamically unstable intermediate 2,4-diimino-1,3-thiazole 6.