Distributed Time Delay의 개념을 응용하여 이화명나방의 발생시기를 예측할 수 있는 Phenological System Model을 구성하고 이의 타당성검정을 위해 기존 병해충발생예찰자료 및 일별 기상관측자료를 이용하여 본 해충의 1세대 경과에 소요되는 유효적산온도(DEL)와 Delay의 차수 K치를 산출한 후 이화명나방의 누적우화율곡선을 전자계산기로 Simulation 하였다. 그 결과 Model에 의해 추정된 1978년의 6개 선정지점의 누적우화율곡선은 실측 누적유살수비율곡선과 매우 유사하였으나 우화 초기 및 후기에 다소 편재하는 경향이 있었다. 한편 실측 $50\%$ 유살일과 Model에 의해 추정된 $50\%$ 우화일 간에는 수원에서 6일, 춘천에서 $5\~6$일의 차이를 보였으나 이리, 대구, 보성 및 밀양지역에서는 $2\~3$일의 근소한 차이를 보였다. 이화명나방의 Phenological Simulation Model은 각 발육단계별 실측밀도조사자료와 월동후 유충집단의 발육 및 일령분포, 그리고 사망요인에 대한 고려 등이 연구 보완되어지므로 더욱 확장된 System으로서 구성되어 질 것으로 생각된다.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.429-432
/
1999
Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.
Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.
Abstract Over 700/0 of the rural land area in Korea is mountainous and small watersheds provide most of the water resources for agricutural use. To provide an appropriate tool for the agricultural water resource development project, SNUA2, a mathematical model for simulating the physical processes governing the precipitation-runoff relationships and predicting the storm and long-term runoff quantities from the small mountainous watersheds was developed. The hydrological characteristics of small mountainous watersheds were reviewed to select appropriate theories for the simulation of the runoff processes, and a deterministic and distributed model was developed. In this, subsurface flows are routed by solving Richard's two dimensional equation, the dynamics of soil moisture contents are simulated by the consideration of phenological factors of canopy plants and surface flows are routed by solving the kinematic wave theory by numerical analysis. As a result of an application test of the model to the Sanglim watershed, peak flow rates of storm runoff were over-estimated by up to 184.2%. The occurence time of peak flow and total runoff volume of storm runoffs simulated were consistent with observed values and the annual runoff volumes were simulated in the error range of less than 5.8%.
본 연구는 광안벼를 공시하여 동일한 일장 조건에서 온도에 따른 벼의 출엽 및 출수 반응을 검토하여 온도에 의한 출엽속도 추정모델을 설정하고자 하였던 바 결과를 요약하면 다음과 같다. 1. 13시간의 동일한 일장에서 최종엽수는 15엽으로 온도에 따라 변하지 않았다. 2. 출엽속도는 저온에서 고온으로 갈수록 증가하였으며, 고온일수록 발육진전에 따른 출엽속도 감소정도가 컸다. 3. 온도변화에 따른 출엽속도는 15-27$^{\circ}C$의 범위에서는 온도가 높아짐에 따라 직선적으로 높아지는 1차 회귀 관계를 보였다. 임계온도는 발육진전에 따라 높아지는 경향을 보였다. 4. 임계온도를 1$0^{\circ}C$로 하였을 때 유효적산온도와 출엽과의 관계는 Logistic 함수에 의하여 가장 잘 표현되었다($R^2$=0.995). 하루당 출엽속도는 다음의 식으로 표현되었다. (equation omitted) 여기서 dL/dt는 출엽속도, T$_{i}$는 일평균기온, L은 엽수이고 a, b, c는 상수로 각각 41.8, 1098.38, -0.9273이다. 5. 위의 출엽속도 추정모델에 의해 추정된 값은 모델설정에 이용되지 않은 실제 조사 출엽속도와 가 0.99이상으로 추정 정확도가 매우 높았다.
잔디밭에 문제시되는 1년생 화본과 잡초인 바랭이(Digitaria sp.)의 종내 및 종간 변이성을 D. ischaemum과 D. Sanguinalis의 5개 지역종을 대상으로 생육상과 포장조건에서 알아보았다. 포장실험결과 D. sanguinalis와 D. ischaemum의 종내 또는 종간의 잎의 길이와 폭 등을 포함한 형태적 형질에 관련된 유의한 변이성이 관찰되었다. 하지만, 표현형적 변이성에는 실질적 차이는 인정되지 않아 포장조건에서 최초발아시기는 종간 또는 지역종에 관계없이 동일하였다. 4가지의 주야간 온도 차이(25/$25^{\circ}C$, 27.5S/22.5$^{\circ}C$, 30/2$0^{\circ}C$, 15/35$^{\circ}C$)로 조절된 생육상 조건의 실험에서 각 바랭이 종의 발아소요일수에 관한 종간 또는 종내의 변이성은 없었다. 따라서, 잔디밭에서 효율적인 바랭이 방제를 위해 특정지역에서 최초 발아시기에 관련된 예측모델은 타 지역에도 동일하게 적용 가능할 것으로 생각된다.
월별 기후통계량의 조화해석에 의해 생성한 일 기온 자료가 생물계절모형의 입력자료로서 적합한지 여부를 평가하여 농림업 부문 기후시나리오 응용정보 제작 상오류를 제거하기 위해 본 연구를 수행하였다. 서울관측소의 1971-2000 평년 월별 일 최고기온과 최저기온 평균값으로부터 조화해석에 의해 365일 간 기온자료를 생성하였다. 이것을 널리 검증된 온도시간 기반의 벚꽃 개화모형에 입력하여 휴면, 발아, 개화 등 주요 식물계절을 추정하였다. 같은 기간 중 실측기온자료에 의해 모형을 구동시켜 얻은 결과와 비교한 바, 연차변이를 전혀 반영하지 못하는 것은 물론, 휴면해제 25일 단축, 강제 휴면기간 57일 연장, 발아 14일 지연, 개화 13일 지연등 평균값도 크게 달라 식물계절을 크게 왜곡시키는 것으로 판단되었다. 대안으로서 확률추정기법에 의해 일기상자료를 생성하고 이를 이용하여 모형을 구동한 결과 실측결과에 비해 휴면해제 6일 단축, 강제휴면기간 10일 단축, 발아 3일 지연, 개화 2일 지연 등으로 조화해석자료 사용에 비해 크게 개선되었음을 확인하였다. 연차변이양상 역시 실측기온에 의한 모의결과와 크게 다르지 않아, 향후 이 자료를 농업부문 전자기후도 제작에 적용하면 기후변화 적응정책 수립을 실용수준에서 지원할 수 있을 것으로 보인다.
An accurate prediction of dormancy release and bud burst in temperate zone fruit trees is indispensable for farmers to plan heating time under partially controlled environments as well as to reduce the risk of frost damage in open fields. A thermal time-based two-step phenological model that originated in Italy was applied to two important grapevine cultivars in Korea for predicting bud-burst dates. The model consists of two sequential periods: a rest period described by chilling requirement and a forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units (chill days in negative sign) until a pre-determined chilling requirement for rest release is met. After the projected rest release date, it adds daily heat units (anti-chill days in positive sign) to the chilling requirement. The date when the sum reaches zero isregarded as the bud-burst in the model. Controlled environment experiments using field sampled twigs of 'Campbell Early' and 'Kyoho' cultivars were carried out in the vineyard at the National Horticultural Research Institute (NHRI) in Suwon during 2004-2005 to derive the model parameters: threshold temperature for chilling and chilling requirement for breaking dormancy. The model adjusted with the selected parameters was applied to the 1994-2004 daily temperature data obtained from the automated weather station in the NHRI vineyard to estimate bud burst dates of two cultivars and the results were compared with the observed data. The model showed a consistently good performance in predicting the bud burst of 'Campbell Early' and 'Kyoho' cultivars with 2.6 and 2.5 days of root mean squared error, respectively.
The Fuji variety of apple, introduced in Japan, has excellent storage quality and good taste, such that it is the most commonly cultivated apple variety in Gunwi County, North Gyeongsang Province, Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm in important aspects such as working time, fruit storage, market shipment, and labor distribution. Temperature is one of the most important factors that determine plant growth, development, and yield. This paper reports on the beta distribution (function) model that can be used to simulate the the phenological response of plants to temperature. The beta function, commonly used as a skewed probability density in statistics, was introduced to estimate apple harvest maturity as a function of temperature in this study. The model parameters were daily maximum temperature, daily optimum temperature, and maximum growth rate. They were estimated from the input data of daily maximum and minimum temperature and apple harvest maturity. The difference in observed and predicted maturity day from 2009 to 2012, with optimal parameters, was from two days earlier to one day later.
기후변화에 특히 민감한 농업분야에서 최근 겨울철 이상난동 현상으로 과실류의 개화시기는 앞당겨지고 있으며, 늦서리에 의한 꽃눈의 피해는 지속적으로 발생하고 있다. 본 연구에서는 꽃눈이 늦가을부터 휴면에 진입하여 추운 겨울을 지나 싹이 트고 꽃이 피는 봄까지 경과 기온의 양상이 식물의 개화반응에 어떤 영향을 미치는지 살펴보고자 하였다. 이를 위해 남한에서 주로 활용되고 있는 개화예측모델을 대상으로 최근 3년간 8개 지점에서 관측된 기온 자료를 확보하여 신고 배의 내생휴면 해제를 위해 필요한 냉각량과, 휴면타파 이후 개화까지 요구되는 가온량의 일정기간 누적값을 모델별로 각각 비교하고, 객관적으로 평가할 수 있는 관측 만개일 정보를 수집하여 지역별 모델 예측력을 평가하였다. 변동계수로 살펴본 냉각량 계산에 대한 모델별 성능은 mDVR 모델에서 8.4%로 가장 안정적인 것으로 확인되었고, 휴면해제 이후 개화에 도달하기까지 필요한 가온량에 대한 모델별 변동계수는 CD 모델이 17.5%로 낮은 편이었다. 2018년부터 2020년까지 3년간의 신고 배의 만개기 관측날짜로부터 평가한 DVR 모델, mDVR 모델, CD 모델의 만개기 예측력은 mDVR 모델의 정확도가 가장 높은 것으로 나타났고, DVR 모델이 전반적으로 좋지 않았다. 특히 울주나 사천 등 기온이 온난한 남부 해안지역에서 오차가 큰 경향이었으며, 예년에 비해 겨울철 기온이 유난히 따뜻했던 2019-2020년은 이천을 제외한 모든 지점에서 실제 개화일보다 빠르게 예측하는 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.