Song Yoo Han;Choi Seung Yoon;Hyun Jai Sun;Kim Chang Hyo
Korean journal of applied entomology
/
v.21
no.4
s.53
/
pp.200-206
/
1982
A computer simulation model was constructed to explore the phonology of the Striped Rice Borer, Chilo suppressalis (Walker), in Korea. The phenological system model based on the concept of distributed time delay was written in the computer program 'INSECT' and simulated with the estimated parameters of the effective day-degrees (DEL) and the order of time delay (K) for determining the validity of the system model. The accumulated emergence curves obtained from the phenological model were slightly different from the observed light trap data at the early and late stage of the moth emergence in 1978. The differences between observed and simulated $50\%$ emergence date were five to six days in the locations of Suweon and Chuncheon, while it was only two to three days in Iri, Daegu, Boseong, and Milyang. The phenological model should be further improved for simulation of field population changes by adding the information of the time delay process in each developmental stage, the age distribution of overwintered population, and the limiting factors of the borer mortality.
Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.
Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.
Magazine of the Korean Society of Agricultural Engineers
/
v.32
no.E
/
pp.33-46
/
1990
Abstract Over 700/0 of the rural land area in Korea is mountainous and small watersheds provide most of the water resources for agricutural use. To provide an appropriate tool for the agricultural water resource development project, SNUA2, a mathematical model for simulating the physical processes governing the precipitation-runoff relationships and predicting the storm and long-term runoff quantities from the small mountainous watersheds was developed. The hydrological characteristics of small mountainous watersheds were reviewed to select appropriate theories for the simulation of the runoff processes, and a deterministic and distributed model was developed. In this, subsurface flows are routed by solving Richard's two dimensional equation, the dynamics of soil moisture contents are simulated by the consideration of phenological factors of canopy plants and surface flows are routed by solving the kinematic wave theory by numerical analysis. As a result of an application test of the model to the Sanglim watershed, peak flow rates of storm runoff were over-estimated by up to 184.2%. The occurence time of peak flow and total runoff volume of storm runoffs simulated were consistent with observed values and the annual runoff volumes were simulated in the error range of less than 5.8%.
Under the constant daylength of 13 hours and growth temperatures of 15$^{\circ}C$ to 27$^{\circ}C$, the final number of loaves (FNL) on the main culm was constant as 15 regardless of temperature in rice variety 'Kwanganbyeo'. Leaf appearance rate (LAR) increased with rising temperature and decreased with phenological development. Threshold temperature (T$_{o}$) was not constant across growth stages, but increased with phenological development. Effective accumulated temperature (EAT), which is calculated by the summation of values subtracting T0 from daily mean temperature, is closely related with number of leaves appeared (LA). LA was fitted to bilinear, quadratic, power and logistic function of EAT. Among the functions, logistic function had the best fitness of which coefficient of determination was $R^2$=0.995. Therefore, LAR prediction model was established by differentiating this function in terms of time: (equation omitted). where dL/dt is LAR, T$_1$ is daily mean temperature, L is the number of leaves appeared, and a, b, and c are constants that were estimated as 41.8, 1098.38, and -0.9273, respectively. When predictions of LA were made by LAR prediction model using data independent of model establishment, the observed and predicted LA showed good agreement of $R^2$$\geq$0.99.
A field trial was initiated to examine the range of inter- and intraspecific variations in morphological and phenological traits with five different accessions of smooth and large crabgrass. In addition, a controlled environment study was conducted to determine the phenotypic plasticity among the accessions of both species in response to 4 daily tempera-ture differentials. In the field experiment, significant inter- and intraspecific variations of smooth and large crabgrass were observed in morphological traits such as leaf length and width. However, most phenological traits were not substantially different between the species and among the accessions of each species. The first seedling emerged at the same time, requiring 9~ 10 days, regardless of the accessions and species. In a controlled environment study, all accessions of each species responded similarly to the 4 temperature differentials in seedling emergence, indicating seedling emergence was not a plastic trait. These results suggest that predicting crabgrass seedling emergence could be independent of geographical regions in the US.
Korean Journal of Agricultural and Forest Meteorology
/
v.14
no.1
/
pp.11-18
/
2012
Daily temperature data produced by harmonic analysis of monthly climate summary have been used as an input to plant phenology model. This study was carried out to evaluate the performance of the harmonic based daily temperature data in prediction of major phenological developments and to apply the results in improving decision support for agricultural production in relation to the climate change scenarios. Daily maximum and minimum temperature data for a climatological normal year (Jan. 1 to Dec. 31, 1971-2000) were produced by harmonic analysis of the monthly climate means for Seoul weather station. The data were used as inputs to a thermal time - based phenology model to predict dormancy, budburst, and flowering of Japanese cherry in Seoul. Daily temperature measurements at Seoul station from 1971 to 2000 were used to run the same model and the results were compared with the harmonic data case. Leaving no information on annual variation aside, the harmonic based simulation showed 25 days earlier release from endodormancy, 57 days longer period for maximum cold tolerance, delayed budburst and flowering by 14 and 13 days, respectively, compared with the simulation based on the observed data. As an alternative to the harmonic data, 30 years daily temperature data were generated by a stochastic process (SIMMETEO + WGEN) using climatic summary of Seoul station for 1971-2000. When these data were used to simulate major phenology of Japanese cherry for 30 years, deviations from the results using observed data were much less than the harmonic data case: 6 days earlier dormancy release, 10 days reduction in maximum cold tolerance period, only 3 and 2 days delay in budburst and flowering, respectively. Inter-annual variation in phenological developments was also in accordance with the observed data. If stochastically generated temperature data could be used in agroclimatic mapping and zoning, more reliable and practical aids will be available to climate change adaptation policy or decision makers.
Korean Journal of Agricultural and Forest Meteorology
/
v.7
no.3
/
pp.185-191
/
2005
An accurate prediction of dormancy release and bud burst in temperate zone fruit trees is indispensable for farmers to plan heating time under partially controlled environments as well as to reduce the risk of frost damage in open fields. A thermal time-based two-step phenological model that originated in Italy was applied to two important grapevine cultivars in Korea for predicting bud-burst dates. The model consists of two sequential periods: a rest period described by chilling requirement and a forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units (chill days in negative sign) until a pre-determined chilling requirement for rest release is met. After the projected rest release date, it adds daily heat units (anti-chill days in positive sign) to the chilling requirement. The date when the sum reaches zero isregarded as the bud-burst in the model. Controlled environment experiments using field sampled twigs of 'Campbell Early' and 'Kyoho' cultivars were carried out in the vineyard at the National Horticultural Research Institute (NHRI) in Suwon during 2004-2005 to derive the model parameters: threshold temperature for chilling and chilling requirement for breaking dormancy. The model adjusted with the selected parameters was applied to the 1994-2004 daily temperature data obtained from the automated weather station in the NHRI vineyard to estimate bud burst dates of two cultivars and the results were compared with the observed data. The model showed a consistently good performance in predicting the bud burst of 'Campbell Early' and 'Kyoho' cultivars with 2.6 and 2.5 days of root mean squared error, respectively.
The Fuji variety of apple, introduced in Japan, has excellent storage quality and good taste, such that it is the most commonly cultivated apple variety in Gunwi County, North Gyeongsang Province, Korean Peninsula. Accurate prediction of harvest maturity allows farmers to more efficiently manage their farm in important aspects such as working time, fruit storage, market shipment, and labor distribution. Temperature is one of the most important factors that determine plant growth, development, and yield. This paper reports on the beta distribution (function) model that can be used to simulate the the phenological response of plants to temperature. The beta function, commonly used as a skewed probability density in statistics, was introduced to estimate apple harvest maturity as a function of temperature in this study. The model parameters were daily maximum temperature, daily optimum temperature, and maximum growth rate. They were estimated from the input data of daily maximum and minimum temperature and apple harvest maturity. The difference in observed and predicted maturity day from 2009 to 2012, with optimal parameters, was from two days earlier to one day later.
Kim, Jin-Hee;Yun, Eun-jeong;Kim, Dae-jun;Kang, DaeGyoon;Seo, Bo Hun;Shim, Kyo-Moon
Korean Journal of Agricultural and Forest Meteorology
/
v.22
no.4
/
pp.268-278
/
2020
Flowering time has been put forward due to the recent abnormally warm winter, which often caused damages of flower buds by late frosts persistently. In the present study, cumulative chill unit and cumulative heat unit of Niitaka pear, which are required for releasing the endogenous dormancy and for flowering after breaking dormancy, respectively, were compared between flowering time prediction models used in South K orea. Observation weather data were collected at eight locations for the recent three years from 2018-2020. The dates of full bloom were also collected to determine the confidence level of models including DVR, mDVR and CD models. It was found that mDVR model tended to have smaller values (8.4%) of the coefficient of variation (cv) of chill units than any other models. The CD model tended to have a low value of cv (17.5%) for calculation of heat unit required to reach flowering after breaking dormancy. The mDVR model had the most accurate prediction of full bloom during the study period compared with the other models. The DVR model usually had poor skills in prediction of full bloom dates. In particular, the error of the DVR model was large especially in southern coastal areas (e.g., Ulju and Sacheon) where the temperature was warm. Our results indicated that the mDVR model had relatively consistent accuracy in prediction of full bloom dates over region and years of interest. When observation data for full bloom date are compiled for an extended period, the full bloom date can be predicted with greater accuracy improving the mDVR model further.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.