• Title/Summary/Keyword: Phenol removal

Search Result 142, Processing Time 0.02 seconds

Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater (페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자)

  • Hong, Sung-Dong;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.797-806
    • /
    • 2000
  • The objectives were to compare the biodegradable threshold concentrations of phenol with the different composition of the influent carbon source and examine the SMA (Specific Methanogenic Activity)and the possibility of simultaneous removal of high-strength organics and nitrogen compounds in UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) process. The results showed that UASB reactors were efficient to remove phenol and phenol + glucose from synthetic wastewater. At phenol conc, of 600 mg/L and SCOD conc. of 2100 mg/L in UASB reactor(with only phenol as substrate), the removal efficiencies of phenol and SCOD were over 99% and 93% respectively, under MLVSS of 20 g. The activity of microorganism was $0.112g\;phenol/g\;VSS{\cdot}d$, $0.351g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.115L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. At phenol conc. of 760 mg/L and SCOD conc. of 4300 mg/L in UASB reactor( with phenol + glucose as substrates), the removal efficiencies of phenol and of SCOD were over 99% and 90% respectively, under MLVSS of 20 g. The activity of microoganism was $0.135g\;phenol/g\;VSS{\cdot}d$, $0.696g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.257L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. Serum bottle test showed that the activity of granule was inhibited over 1600 mg/L phenol conc, and denitrification and methanogenesis simultaneously took place in UASB granules under co-substrates conditions. PBR reactor packed with cilium type media, was efficient in nitrification. In condition of $0.038kg\;NH_4-N/m^3-media{\cdot}d$. 10~12 mg/L phenol conc. and 200~500 mg/L SCOD conc., nitrification efficiency was over 90% and phenol removal efficiency was over 98%.

  • PDF

Electrochemical Degradation of Phenol by Electro-Fenton Process (전기-펜톤 공정에 의한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Oxidation of phenol in aqueous media by electro-Fenton process using Ru-Sn-Sb/graphite electrode has been studied. Hydrogen peroxide was electrically generated by reaction of dissolved oxygen in acidic solutions containing supporting electrolyte and $Fe^{2+}$ was added in aqueous media. Phenol degradation experiments were performed in the presence of electrolyte media at pH 3. Effect of operating parameters such as current, electrolyte type (NaCl, KCl and $Na_2SO_4$) and concentration, $Fe^{2+}$ concentration, air flow rate and phenol concentration were investigated to find the best experimental conditions for achieving overall phenol removal. Results showed that current of 2 A, NaCl electrolyte concentration of 2g/l, 0.5M concentration of $Fe^{2+}$, air flow rate of 1l/min were the best conditions for mineralization of the phenol by electro-Fenton.

Effect of Aeration on Removal of phenolic Compounds in Soil (공기공급이 토양내 페놀화합물 제거에 미치는 영향)

  • 박준석;남궁완;황의영
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.3-12
    • /
    • 2000
  • This study was carried out to evaluate the effect of aeration on removal of phenolic compounds in soils. Phenol, 2,4-dichlorophenol, and pentachlorophenol as phenolic compounds were chosen in this study. Texture of soil used was sandy loam. Temperature and moisture content of the soils in lab-scale reactors were maintained at $25^{\circ}C$ and at 15%, respectively. Phenolic compounds vaporized from reactors were trapped by methylene chloride solution. Phenolic compounds were applied to the soils as individual compound Aeration improved the phenol degradation rate in soil, while it did not in case of 2,4-dichlorophenol and pentachlorophenol. The amount of phenol vaporized by aeration was only 0.3of of that of initial phenol compound added to the soil. First order kinetics described the degradation rates of phenolic compounds better than zero order kinetics.

  • PDF

A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber (섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구)

  • Tak, Seong-Jae;Seo, Seong-Wen;Kim, Seong-Sun;Kim, Jin-Man
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

A Study on the Ozonation Characteristics of the Phenol Contaminated Wastewater by Increasing Phenol Concentration in the Continuous PCR and BCR (연속식 PCR과 BCR에서 페놀 농도 증가에 따른 오존 처리 특성에 관한 연구)

  • Kim, Yong-Dai;Ahn, Jae-Dong;Lee, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.12-19
    • /
    • 1995
  • The objectives of this research prograln were to study the ozonation characteristics of phenol contaminated wastewater in the continuous packed column reactor (PCR) and the bubble column reactor (BCR) using ozone that has a strong oxidizing potential, and to provide the fundamentals of ozonizing the phenol contaminated wastewater. Among various influencing factors on phenol decomposition through the oxidation by ozone, phenol/ozone mde ratio was chosen as reaction parameters. Concerning the phenol/ozone mde ratio, as the influent phenol concentration increased from 30 mg/l to 150 mg/l, the phenol removal efficiency decreased from 99% for 30 mg/l to 83.7% for 150 mg/l, in PCR. PCR also showed higher treatment efficiency than BCR by 1% for 30 mg/l and 2.2% for 150 mg/l, respectively. The ozone utilization efficiency of PCR for the phenol concentration 30 mg/l was higher than that of BCR while the efficiency of both reactors was 99.9% for the phenol concentration of 150 mg/l.

  • PDF

A Study on the Treatment of Organic Wastewater by Ozone Electrolysis (유기성 폐수의 오존전해처리에 관한 연구)

  • 정홍기;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.59-63
    • /
    • 1996
  • To treat certain wastewater that has alcohol and phenol, we performed the ozone electrolysis by using the titanium electrode. In this experiment, we examined decomposition voltage of organics, time for electrolysis, and removal efficiency of organics. In addition we compared the ozone oxidation electrolysis. The followings are results; 1. When it comes to the alcohol treatment in wastewater, ozone electrolysis showed higher removal efficiency than ozone oxidation or electrolysis. 2. After comparing the decomposition rate of methylalcohol, ethylalcohol, and prophylalcohol in ozone electrolysis, we knew the fact that increasing carbon number made the decomposition rate slow. 3. According to the treatment of alcohol by ozone electrolysis, decomposition voltage was 50V, time for electrolysis was three hours, and treatment acidity was neutral (pH 6.5 - 8.1). 4. Ozone electrolysis was effective to the phenol treatment. When we treated phenol by using ozone electrolysis for three hours, TOC treatment efficiency was 95%. However, ozone oxidation just showed 45% treatment efficiency.

  • PDF

HDTMA-Bentonite로부터 페놀류 화합물의 경쟁탈착

  • 신원식;김영규;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.15-18
    • /
    • 2001
  • Sorption/desorption studies were conducted to determine sorption/desorption characteristics of phenolic compounds (phenol and 4-chlorophenol) in organically modified natural bentonite. The cationic exchange capacity (CEC) of bentonite was exchanged with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in aqueous solution. This modification produces a change of the surface property of bentonite from hydrophilic to organophilic. The single-solute and bi-solute competitive adsorptions were performed In batch mode to investigate the removal of two toxic organic Phenols, chlorophenol and 4-chlorophenol on the HDTMA-bentonite. The adsorption affinity of the 4-chlorophenol was higher than phenol due to higher octanol:water partition coefficient (Kow). The single-solute and bi-solute competitive desorptions were also performed investigate the competitive desorption of the phenolic compounds from HDTMA-bentonite. Freundlich model was used to analyze the single-solute adsorption/desorption results, while the IAST model predicted the hi-solute adsorption/desorption equilibria. The IAST model well predicted hi-solute competitive adsorption/desorption behaviors.

  • PDF

Preparation of $TiO_2$-Coated Polypropylene Beads by PCVD Process for Phenol Removal

  • Pham, Hung-Cuong;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.185-185
    • /
    • 2009
  • Polypropylene beads (PP) coated with $TiO_2$ thin films were prepared by a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and were used to remove phenol in aqueous solution. The $TiO_2$ thin films of 416 nm thickness were coated on the PP particles uniformly. As the number of $TiO_2$-coated PP beads increases, the phenol is degraded faster, because of larger total surface area of photocatalysts for photodegradation. This study shows that a rotating cylindrical PCVD reactor can be a good method to prepare the particles coated with high-quality $TiO_2$ thin films, which can be applied to the pollutant removal by a photodegradation reaction of $TiO_2$ with high efficiency.

  • PDF

Phenol Removal by Ozone-Activated Carbon Hybrid Process (오존-활성탄 복합공정에 의한 페놀 제거)

  • Kim, Hwanik;Moon, Ji-Hoon;Chung, Jae Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.311-316
    • /
    • 2014
  • Effects of operating parameters such as activated carbon dose and pH on the phenol oxidation in ozone-activated carbon hybrid process were investigated through a kinetic study. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting phenol degradation. The pseudo-first order rate constants of phenol degradation increased and half-life of phenol decreased with activated carbon dose. The increase of pH enhanced $OH{\cdot}$ generation through chain reactions initiated by $OH^-$, therefore increasing the phenol degradation rate. TOC removal efficiency increased about 3.2 times by adding activated carbon in ozonation process.

A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process (오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.490-495
    • /
    • 2012
  • The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.