• 제목/요약/키워드: Phenol compounds

검색결과 512건 처리시간 0.027초

황색종 잎담배의 연기응축물중 페놀 화합물에 관한 연구 (Studies on the Phenol Compounds in Smoke Total Particulate Matters of Flue-cured Tobacco Leaves)

  • 복진영;백순옥;김상범;안동명;조수헌
    • 한국연초학회지
    • /
    • 제23권2호
    • /
    • pp.162-167
    • /
    • 2001
  • This study was carried out to quantitatively determine phenol compounds in smoke total particulate matter(TPM) to evaluate the qualititive characteristics of flue-cured tobacco varieties(NC82, KFl14 and KFl18). After collecting The TPM by using smoking machine, the concentration of phenol compounds were analyzed by gas chromatography as their trimethylsilyl derivative on a fused capillary column bonded with a 5% PE ME siloxane stationary phase. In all the flue-cured tobacco varieties, the major phenol components were monohydroxy compounds. The order of the highest concentration of total phenol compounds in TPM was NC82, KF114 and KFl18 but the contents of dihydroxy compound in the KFl18 was higher than those of NC82 and KF114.

  • PDF

여러 가지 별미장의 숙성과정 중 향기성분의 변화 (Changes in Aroma Compounds of Several Byeolmijang during Aging)

  • 우관식;유선미;임성경;전혜경;권오찬;이준수
    • 한국식품영양과학회지
    • /
    • 제33권10호
    • /
    • pp.1689-1697
    • /
    • 2004
  • 지역별 별미장의 숙성과정 중 향기성분의 변화를 조사하기 위하여 SDE로 추출하고 GC 및 GC/MS로 동정하였다. 시료로는 대맥장, 생황장, 무장, 비지장, 소두장, 찌금장 등의 6종을 하였으며, 그 결과 hexanal, benzeneacetaldehyde, benzaldehyde, furfural, benzyl-alcohol, furan 화합물, pyrazine 화합물, phenol류 등이 공통적으로 검출되 었다 보통 숙성과정 중에 benzeneacetaldehyde, benzaldehyde, fufural, pyrazine 화합물, phenol류 등은 증가하는 추세를 보였으며, 1-octene-3-ol, hefanal, benzyl-alcohol, furan화합물 등은 감소하는 경향이 두드러졌다. 또한 지역별 별미장에서 대표적인 성분으로는 대맥장에서 2-heptenal과 2,4-decadienal 등이 있고, 생황장은 tetramethyt-pyrazine이 다른 별미장과 달리 다량 함유되어 있었다. 무장에서는 phenol, 4-methoxy-phenol,4-ethyl-phenol 등의 phenol류가 검출되었으며 naphthalene, eugenol 등이 소량 검출되었다. 비지장은 2,4-decadienal 등이 많이 검출되었으며, 소두장은 2,3-dihydro-benzofuran,2-methoxy-4-vinylphenol 등이 다량 함유되어 있었다. 찌금장의 경우는 linaool, geraniol, 3-elemene, f-lonone, ledene 등이 검출되었는데, 이는 고춧가루 첨가에 의한 것으로 보인다.

Regulation of Phycocyanin Development by Phenolic Compounds in the Cyanobacterium Anabaena sp. PCC 7120

  • Kim, Jin-Yong;Jo, Yeara;Kim, Young-Saeng;Lee, Eun-Jin;Yoon, Ho-Sung
    • 생태와환경
    • /
    • 제39권4호통권118호
    • /
    • pp.445-449
    • /
    • 2006
  • Phenolic compounds are manufacturing by-products commonly found in industrial wastewater. The toxicity of high level phenolic compounds in wastewater threatens not only the aquatic organisms, but also many components of the adjacent ecosystem. One of the major light harvesting pigments in cyanobacteria is phycocyanin which can be rapidly and specifically degraded by external stimuli such as nutritional depletion or environmental stress. We employed the cyanobacterium Anabaena sp. PCC 7120 as an indicator organism in estimating the pollution level by phenolic compounds. The phycocyanin content of the cyanobacterium decreased without significantly altering the total chlorophyll as the phenol concentration in a medium increased. We examined the phenol contamination level using the correlation of the phycocyanin content and the phenol concentration. Our results indicated that no significant pollution by phenolic compounds was found in several waterbodies in the vicinity of Daegu, South Korea.

Changes of Phenol Compounds according to Storing Years in Soybean

  • Kim, Seung-Hyun;Song, Hong-Keun;Ahn, Joung-Kuk;Kim, Jung-Tae;Hahn, Joon-Sang;Chung, Ill-Min
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.82-88
    • /
    • 2004
  • The objective of this study was to determine the role of storing years with the variation of total phenol and individual phenolic compounds in soybean (Glycine max L.) seeds. The total phenol content varied from 0.36 to 0.42% over four years, with the highest value (0.42%) found at storage for two and three years. Among the nine soybean varieties examined, Daweonkong had the highest total average phenol content (0.58%). The total content of 11 phenolics varied from 730.0 to 1812.8 $\mu\textrm{g}\;\textrm{g}^{-1}$ over storage for four years, and the highest concentration (1812.8 $\mu\textrm{g}\;\textrm{g}^{-1}$) was found at storage for two years. Myeongjunamulkong (1465.4 $\mu\textrm{g}\;\textrm{g}^{-1}$) had the highest mean content among the nine soybean varieties. The total content of 11 phenolic compounds measured in this study occupied from 20.96 to 47.73% of the total phenol contents. The highest total phenol contents were in seeds with black coats (5279.4 $\mu\textrm{g}\;\textrm{g}^{-1}$), while the highest concentration of individual phenolic compounds were in seeds with green coats (1419.5 $\mu\textrm{g}\;\textrm{g}^{-1}$). Our study suggests that it may be feasible to improve soybean varieties with high functional substances such as phenolic compounds.

초음파로 페놀 분해 시 염소계화합물의 첨가와 음향 강도의 영향 (Effect of Power Intensity on the Phenol and Chlorinated Compounds Mixture Solutions by Ultrasound)

  • 임명희;손영규;양재근;김지형
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.118-122
    • /
    • 2008
  • Degradations of phenol and chlorinated compounds mixtures were studied with ultrasound of 20 kHz and 0.57, 1.14 W/mL. In presence of carbon tetrachloride (CT), degradation rate of phenol is faster than chloroform (CF), dichloromethane (DCM) and phenol solution. It is due to that CT generates of free chlorine (HOCl and $OCl^-$) from the sonochemical degradation and plays a role of hydrogen atom scavenger. CF and DCM are react with free chlorine, so amount of free chlorine is smaller than CT solution. The degradation rates of chlorinated compounds decreased with co-presence of phenol in the solution due to the distribution ultrasonic energy to both compounds. The measured chloride ion was lower than the theoretical concentration assuming complete degradation. This means not all the contaminants destructed went through complete degradation.

Phenol성 물질이 첨가된 Corn Oil-in-Water Emulsion의 산화에 미치는 Surfactant Micelle의 영향 (Effect of Surfactant Micelle on Lipid Oxidation in Corn Oil-in-Water Emulsion with Phenol Compounds)

  • 김병규;천성숙;조영제
    • Applied Biological Chemistry
    • /
    • 제47권1호
    • /
    • pp.72-77
    • /
    • 2004
  • 5% corn oil과 17 mM Brji 700으로 제조한 oil-in-water emulsion(O/W)에서 과량의 잉여 surfactant가 phenol이 첨가된 O/W의 산화에 미치는 영향을 알아보기 위하여 Brji 700을 $0{\sim}2%$의 농도로 O/W에 첨가한 경우, 첨가된 surfactant의 양이 증가할수록 droplet의 particle size는 커지는 경향을 나타내었다. 또한 continuous phase의 surfactant 농도도 높아지며 phenol 함량도 상대적으로 높아지는 것을 알 수 있었다. Phenol류가 100 ppm의 농도로 첨가된 O/W에 과량의 surfactant$(0{\sim}2%)$를 첨가하고 30일간 저장 기간별 hydroperoxide의 생성량을 측정한 결과, 대조구에 비해 낮은 hydroperoxide 함량을 보여 surfactant를 첨가하지 않은 실험구와 유사한 경향을 보였으나, hydroperoxide 함량은 surfactant를 추가하지 않은 실험구 보다 더 낮은 값을 나타내었다. 또한 phenol 종류 및 surfactant 농도별 hydroperoxide 생성억제 효과와 headspace aldehyde 생성 억제 효과는 BHT>procyanidin B3-3-O-gallate>(+)-gallocatechin>(+)-catechin 및 2%>1%>0% surfactant 첨가의 순서로 나타났다. 이러한 결과는 phenol성 물질과 과량의 surfactant micelle에 의해 emulsion으로부터 continuous phase로 hydroperoxide의 physical location 변화가 발생하는 것을 나타낸다.

잎담배 종류 및 등급에 따른 담배 연기응축물의 Acid 및 Phenol 화합물 함량 비교 (Comparison of Acid and Phenol Compounds in Smoke Total Particulate Matter by the Different Tobacco Leaves)

  • 황건중;이문수;나도영;장기철
    • 한국연초학회지
    • /
    • 제22권1호
    • /
    • pp.84-90
    • /
    • 2000
  • This study was conducted to determine the acid and phenol compounds in smoke total particulate matter(TPM) by the different tobacco variety, and grade of tobacco leaves. Sixteen kinds of tobacco leaves which were flue-curd, burley, orient, reconstituted tobacco, expanded stem, and expanded cut tobacco, were selected for this study. After collecting a TPM by using smoking machine, the concentration of TPM components was analyzed by GC. Acid components of TPM of mainstream smoke were different from the variety and grade. The order of the highest concentration of acid compounds in TPM was flue-cured > orient> burley> expanded cut tobacco> reconstituted tobacco> expanded stem. Though lactic acid and glycolic acid concentrations in flue-cured tobacco were twice higher than those in burley tobacco, the contents of 2-furoic acid and 3,4-dihydroxy butanoic acid in burley tobacco were higher than those in flue-cured tobacco. The content of phenolic compounds in the high grade and thick leaves was higher than that in other tobacco leaves. Phenol and catechol compounds in burley CD3W-2 revealed the least value in concentration among the samples tested. Pyrocatechol and hydroquinone concentrations in flue-cured tobacco were 2-3 times higher than those in burley and orient tobacco.

  • PDF

A Structure-Based Activation Model of Phenol-Receptor Protein Interactions

  • 이경희
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 1997
  • Data from structure/activity studies in vir gene induction system have led to evaluate the working hypothesis of interaction between phenolic inducers and phenol binding proteins. The primary specificity in the association of a phenolic inducer with its receptor in our system is hypothesized to be the hydrogen bonding interactions through the ortho methoxy substituents as well as the proton transfer between the inducer and the binding protein. In this paper the proposed working model for phenol-mediating signal transduction was evaluated in several ways. The importance of the general acid-base catalysis was first addressed by the presence of an acidic residue and a basic residue in the phenol binding protein. Series of compounds were tested for vir gene expression activity to confirm the generation of a strong nucleophile by an acidic residue and an involvement of a basic residue as a proton acceptor. An attempt was made to correlate the pKa values of the phenolic compounds with vir gene induction activities as inducers to further support the proposed proton transfer mechanism. Finally, it was also observed that the regioselectively attached methoxy group on phenol compounds is required as the proper hydrogen bond acceptor.

Acinetobacter sp. T5-7에 의한 Phenol과 Trichloroethylene 분해특성 (Characterization of Trichloroethylene and Phenol Degradation by Acinetobaeter sp. T5-7)

  • 홍성용;이숙희;이정해;하지홍
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.255-262
    • /
    • 1995
  • Intact cells of Acinetobacter sp. T5-7 completely degraded trichloroethylene (TCE) following growth with phenol. This strain could grow on at least eleven aromatic compounds, e.g., benzaldehyde, benzene, benzoate, benzylalochol, catechol, caffeic acid, 2.4-D, p-hydroxybenzoate, phenol, protocatechuate and salicylate, and did grow on alkane, such as octane. But except phenol, other aromatic compounds did not induced TCE degradation. Phenol biotransformation products, catechol was identified in the culture media. However, catechol-induced cells did not degrade TCE. So we assumed that phenol hydroxylase was responsible for the degradation of TCE. The isolate T5-7 showed growth in MM2 medium containing sodium lactate and catechol rather than phenol, but did not display phenol hydroxyalse activity, suggesting induction of enzyme synthesis by phenol. Phenol hydroxylase activity was independent of added NADH and flavin adenine dinucleotide but was dependent on NADPH addition. Degradation of phenol produced catechols which are then cleaved by meta-fission. We identified catechol-2.3-dioxygenase by active staining of polyacrylamide gel.

  • PDF

전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 - (Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment -)

  • 양해영
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.