• Title/Summary/Keyword: PhaseField

Search Result 3,222, Processing Time 0.036 seconds

Study on the Contamination Characteristics of Pollutants at Various type of Abandoned Metal Mines (폐금속 광산의 유형별 오염특성에 관한 연구)

  • Lee, Jong-Deuk;Kim, Tae Dong;Kim, Sun Gu;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.93-108
    • /
    • 2013
  • This study is aimed to prepare the effective detail survey methods(Phase II) of abandoned metal mines through the contamination assessment for mine types and facilities in the abandoned metal mine areas. The study sites of 12 abandoned mines are located in Gyeonggi-do and Gangwon-do and those were chosen among 310 sites that the Phase II survey was conducted from 2007 to 2009 after considering the results of Phase I for abandoned mines scattered all over the country. 12 study sites were classified into four types; Type I sites only have pit mouth. Type II sites have pit mouth and mine-waste field. Type III sites have pit mouth and tailing sorting field. Type IV sites have pit mouth, tailing sorting field and concentrator(s). In forest land, paddy soil and farm land of Type I, As and Cd were showed average concentration, and Cu and Pb were high on the pit mouth area in one mines where the pit mouth was developed within 500 m. In the mines of Type II, Cu and Pb were showed average concentration too, but As and Cd were slightly high in pit mouth and mine-waste field. The mines of Type III which had grinding particle process through physical separation milling or hitting showed similar tendency with Type II. However, mines of Type IV pit mouth, mine-waste field and showed various results depending on defining the contamination sources. For example, if contamination source was pit mouth, the mixed results of Type I, II, II were showed. In tailing sorting field which was regarded as the most important source and having high mobility, however, if there were no facilities or it was difficult to access directly, field sampling was missed occasionally during phase I and phase II survey. For that reason, the assessment for tailing sorting field is missed and it leads to completely different results. In the areas of Type I mines, the concentration of heavy metals exceeded precautionary standards of soil contamination or not within 1,000 meters of pit mouth. Nickel(Ni) was the largest factor of the heavy metal contamination in this type. The heavy metals except Arsenic(As) were shown high levels of concentration in Type II areas, where pit mouth and mine-waste field were operated for making powder in upriver region; therefore, to the areas in the vicinity of midstream and downstream, the high content of heavy metals were shown. The tendency of high level of heavy metals and toxic materials contained in flotation agent used during sorting process were found in soil around sorting and tailing field. In the abandoned-pit-mouth area, drygrinding area and tailing sorting field area, the content of Cupper(Cu) and Zinc(Zn) were higher than other areas. Also, the contaminated area were larger than mine reclamation area(2,000 m) and the location of tailing sorting field was one of the important factors to estimate contaminated area.

Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process (전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용)

  • Park, Byung Heung;Jeong, Sang Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.291-299
    • /
    • 2018
  • Under a pyro-processing concept, an electrolytic reduction process has been developed to reduce uranium oxide in molten salt by electrochemical means as a part of spent fuel treatment process development. Accordingly, a model based on electrochemical theory is required to design a reactor for the electrolytic reduction process. In this study, a 1D model based on the phase-field theory, which explains phase separation behaviors was developed to simulate electrolytic reduction of uranium oxide. By adopting parameters for diffusion of oxygen elements in a pellet and electrochemical reaction rate at the surface of the pellet, the model described the behavior of inward reduction well and revealed that the current depends on the internal diffusion of the oxygen element. The model for the electrolytic reduction is expected to be used to determine the optimum conditions for large scale reactor design. It is also expected that the model will be applied to simulate the integration of pyro-processing.

A Numerical Analysis on the ascoutic radiation efficiency of a stiffend cylindrical structure in underwater under multi-excitation (다중가진을 받는 수중 원통구조물의 방사효율에 대한 수치해석)

  • Kang, Myunghwan;Yi, Jongju;Han, Seungjin;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.372-376
    • /
    • 2014
  • This study is on acoustic radiation efficiency of a tiffened cylindrical model in water-multi-excitation with phase difference using commercial numerical program ABAQUS and SYSNOISE. When the stiffened cylindrical model is under multi-excitation with phase difference, the surface vibration field is variated with phase difference of excitation. By this different surface vibration field, the acoustic radiation efficiency is also variated with phase difference of excitation.

  • PDF

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

Measurement of the Nonlinear Optical Properties by use of the Far-Field Phase Modulation Method (Far-field 위상 변조량 측정법을 이용한 광학매질의 비선형 특성 측정)

  • 김성훈;양준목;김용평;이영우;신동주;정영붕
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.168-174
    • /
    • 1998
  • We have measured nonlinear refractive index and nonlinear absorption coefficient of optical materials by using a far-field phase modulation technique. The phase variation of the probe beam in the nonlinear material is transformed into the spatial phase modulation in the far-field so that the spatial distribution of the optical intensity in conjunction with the computer simulation analysis can give the nonlinear optical constants. We have obtained the nonlinear refractive indices and nonlinear absorption coefficient of $CS_2$ and $BaF_2$ by fitting the experimental values and numerical simulation analysis of far-field measurements. The nonlinear refractive indices of $CS_2$ and $BaF_2$were obtained as $1.2{\times}10^{-11}$ esu and $1.0{\times}10^{-13}$ esu, respectively at 616 nm, and the nonlinear absorption coefficient of BaF$_2$as $5.0{\times}10^{-11}$cm/W at 308nm. These measured values were in good agreement with previous reports.

  • PDF

The Influence of Precipitated Phase in Al-4%Cu Alloy under High Magnetic Field

  • Jun, Jiang;Lee, Hyun-Jun;Min, Qi;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.239-243
    • /
    • 2008
  • Nonferrous metals have a very important position in industry. At present, parts of shipbuilding, automobile, and aircraft etc. are designed and manufactured accurately, simultaneity need light-weight and high-strength. Aluminum copper alloys are one kind of typical precipitation hardening alloy which has been widely used. It is interesting to investigate transformation behavior of precipitated phase in such kind of alloys under high magnetic field. Transformation of materials under high magnetic field is many different compared with conventional condition. The author prepared the Al-4%Cu alloy.

  • PDF

Numerical Study of Defrost Phenomenon of Automobile Windshield (자동차 전방 유리면 성에 전산 해빙해석)

  • 박만성;황지은;박원규;장기룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.157-163
    • /
    • 2003
  • This work was undertaken for the numerical analysis of defrosting phenomena of automobile windshield. To analyze the defrost, the flow and temperature field of cabin interior, heat transfer through the windshield glass, and phase change of the frost should be analyzed simultaneously. The flow field was obtained by solving the 3-D unsteady Navier-Stokes equation and the temperature field was computed by energy equation. The phase-change process of Stefan problem was solved by enthalpy method. For code validation, the temperature field of the driven cavity was calculated. The result of calculation shows a good agreement with the other numerical results. Then, the present code was applied to the defrosting analysis of a real automobile and, also, a good agreement with experiment was obtained.

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

A study on hysteresis and temperature properties of VDF/TrFe copolymer (VDF/TrFE 공중합체의 히스테리시스 및 온도특성)

  • 방태찬;김종경;강대하
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.156-165
    • /
    • 1997
  • D-E hysteresis loops have been measured for the 65/35 mole % copolymer of vinylidene fluoride and trifluoroethylene over wide temperature range. The remanent polarization and the coercive field at room temperature were estimated to be 75 mC/m$^{2}$ and 55 MV/m respectively. D-E hysteresis loops were observed even below the glass transition temperature(-20.deg. C) and the remanent polarization and the coercive field were larger, as the temperature lower. It seems that the remanent polarization and the coercive field depend on the amorphous region as well as crystalline region in this copolymer. And the ferroelectric-to-paraelectric phase transition was observed at 90.deg. C on heating and 80'C on cooling. Double hysteresis loops were observed at the temperature(85.deg. C) of paraelectric phase.

  • PDF

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.